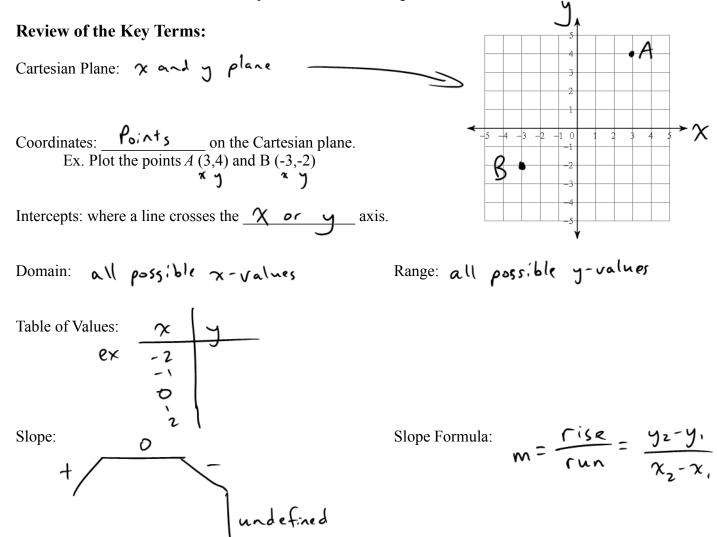
Unit 1: Systems of Linear Equations



42

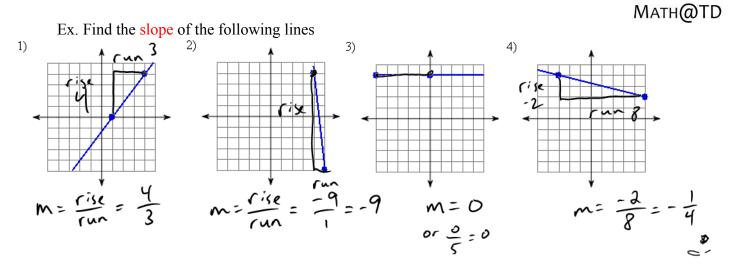
Ex. What is the slope of a line that passes through (-2,5) and (-6, 2)

$$M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{-6 - 2} = \frac{-3}{-4} = \begin{bmatrix} \frac{3}{4} \\ \frac{3}{4} \end{bmatrix}$$

Equation of a Line: $y = \mathbf{m}x + \mathbf{b}$: Slope-intercept form

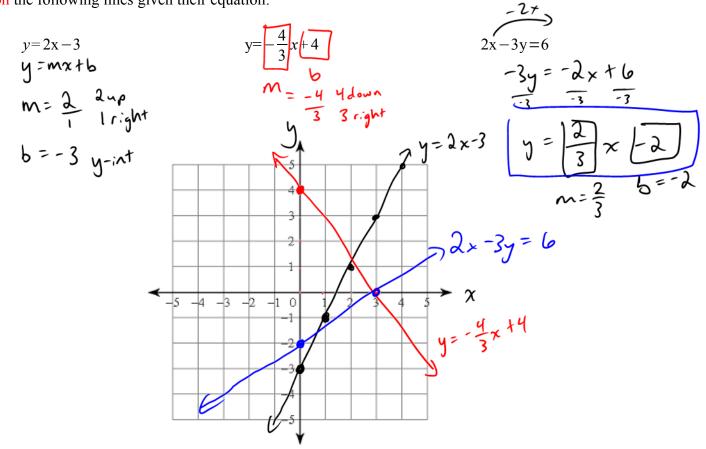
Standard form for the Equation of a Line is Ax + By + C = D

Υ



 $A \infty \Omega$

Graph the following lines given their equation:



Steps to Graphing a Linear Equation:

- y=mx+b 1. Put the equation in $y = m\pi$ 2. Plot the y-intercept on the graph form
- 3. Plot the slope and draw the line

Writing the Equation of a Line

Method 1: When you know the y-intercept, use the Slope-Intercept Form, y = mx + b

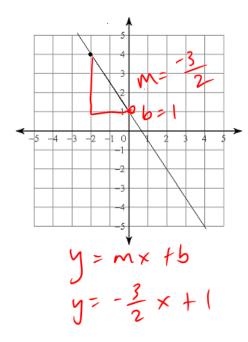
- 1. Identify the y-intercept (b) and slope (m)
- 2. Write the equation replacing the b and m

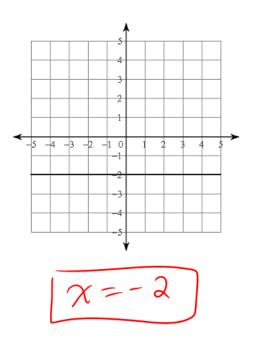
Method 2: When you have 2 points, neither which are the y-intercept, you can use Slope-Point form $y-y_1=m(x-x_1)$

- 1. Use the 2 points to calculate the slope (m)
- 2. Sub in m and a point for (x_1,y_1) into the Slope-point form
- 3. Reorder the equation into Slope-Intercept form OR Standard form

- 1. Use the 2 points to calculate the slope
- 2. Sub in **m** and **a point for (x,y)**
- 3. Solve for b
- 4. Write the equation replacing the b and m

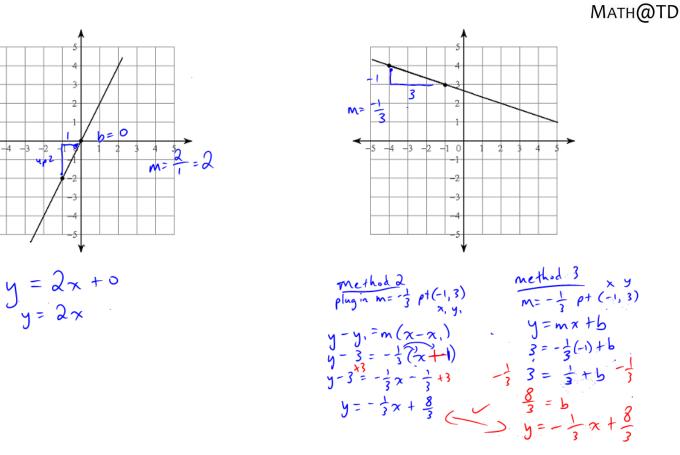
Examples:





Method 3: When you have 2 points, neither which are the y-intercept, you can use Slope-Intercept Form, y=mx + b

-5 -4



 $A\infty()$

Solving for the Unknown

Consider this to be "undoing" whatever has been done to the unknown, often x. Solve for x in the following 2 equations.

$$\frac{x}{9} + 3 \stackrel{-3}{=} 2 - 3$$

$$9\left(\frac{x}{9}\right) = (1)9$$

$$\frac{3x}{10} - \frac{x}{3} = 5$$

$$3o\left(\frac{3x}{10}\right) - 3o\left(\frac{x}{3}\right) = 3o(5)$$

$$\frac{90x}{10} - \frac{30x}{3} = 150$$

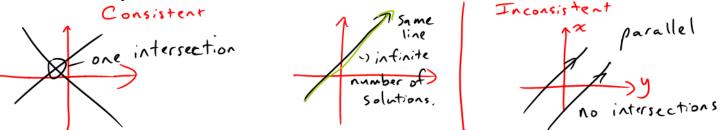
$$9x - 10x = 150$$

$$-x = 150$$

$$x = -150$$

Solving Linear Systems

"Solving" a Linear System means finding the point at which 2 lines intersect. A Linear System can intersect in 3 ways:



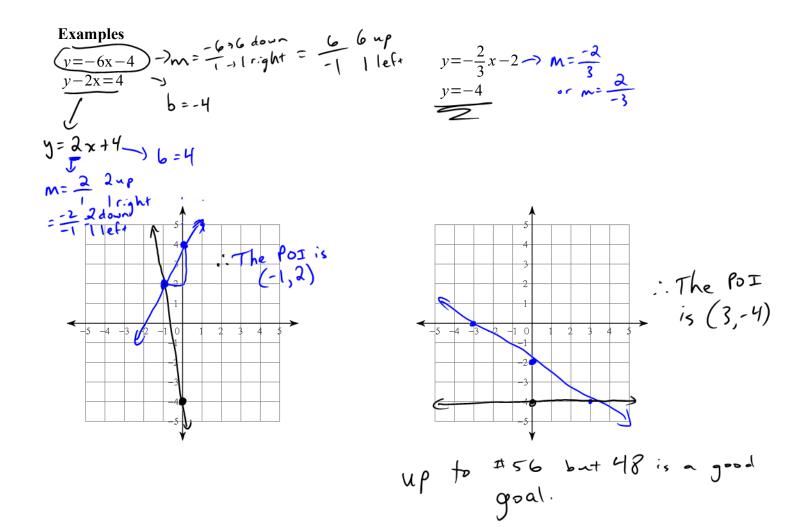
In this unit, we will learn 3 ways to Solve a Linear System:

- 1. Solving by Graphing
- 2. Solving by Substitution
- 3. Solving by Elimination

Method 1: Solve by Graphing:

Steps:

- 1. Graph the 2 linear systems
- 2. State the POI (Point of Intersection) by stating "The POI is (,)"



Method 2: Solve by Substitution:

Steps:

- 1. Isolate a variable (choose the easiest one!), let's call this the 1st equation
- 2. Replace the solution to Step 1 into the 2^{nd} equation and solve the equation
- 3. Use the value from Step 2 and substitute it into the 1st equation to solve for the other variable
- 4. State the POI (Point of Intersection) by stating "The POI is (,)"

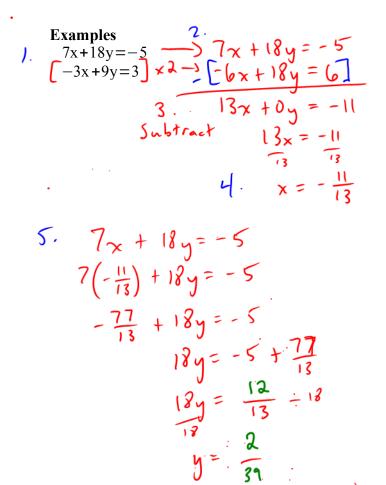
Examples $y-3x=5 \rightarrow 1$. y = 5 + 3x y+x=3 2:(5+3x) + x = .3 5+4x = 3 4x = 3 - 5 4x = -2 x = -0.5 3. y = 5 + 3x y = 5 + 3(-0.5) y = 5 + (-1.5) y = 3.5 $4. \therefore$ The PoI is (-0.5, 3.5) $4x + y = 11 \rightarrow y = 11 - 4x$ x + 2y = 8 $2 \cdot x + 2(11 - 4x) = 8$ x + 22 - 8x = 8 -7x = 8 - 22 -7x = -14 -7x = -14 -7x = -14 -7x = 2 $3 \cdot y = 11 - 4x$ y = 11 - 4x y = 11 - 4(2) y = 11 - 8 y = 3 $4 \cdot -x - 16 \quad \text{PoI} \quad i_s (2, 3)$

Method 3: Solve by Eliminaton:

A∞Ω Math@TD

Steps:

- 1. Place both equations in Pseudo Standard form, Ax + By = C
- 2. Get 2 coefficients to have the same value (ex. 3 and 3) or opposite value (ex. 3 and -3)
- 3. Add or subtract the two equations to eliminate the one variable
- 4. Solve
- 5. Use the value from Step 4 and substitute it into an equation to solve for the other variable
- 6. State the POI (Point of Intersection) by stating "The POI is (,)"



6 ... The POT is $\left(-\frac{11}{13}, \frac{2}{39}\right)$

4x = -2y + 24 -x-3y = -21 1. $4x + 2y = 24$ $[-x - 3y = -2] \times 4$
2. $4x + 2y = 24$ + $[-4x - 12y = -84]$
Add $0\chi - 10y = -60$ -10y = -60 -10 = -10
y = 6 5. $4x + 2(6) = 24$ $4x + 12^{2} = 24^{2}$
$4_{\frac{1}{4}} = \frac{1}{\frac{2}{4}}$ 6 The PDI is (3,6)