

Chapter 7 – Similar Triangles and Trigonometry

7.3 &7.4 Right Angle Triangle **Trigonometry**

Consider the picture:

Notice that $\overline{BC} < \overline{AC}$, and that

 $\measuredangle BDC < \measuredangle ADC$

This suggests that there is a **mathematical relationship** in triangles between lengths of sides and size of angles

That relationship can be described by what we call **TRIGONOMETRY!!**

The Primary Trigonometric Ratios

Given the Right $\triangle ABC$

For $\measuredangle B$ we call side: b -> opposite a > a djacent (beside) c-> hypoteneuse

The Trig Ratios

Sine:
$$sin(B) = \frac{opposite}{hypoteneuse} = \frac{opp}{hyp}$$
.

Cosine:
$$\cos(B) = \frac{adjacent}{hypoteneuse} = \frac{adj}{hyp}$$

Tangent:
$$\tan(B) = \frac{opposite}{adjacent} = \frac{opp}{adj}$$

Example 7.3.1 Given $\triangle ABC$, determine the primary trig ratios for angle *B*.

Class/Homework: Trig Worksheet; 1 - 10