Binomial Products

A binomial is two terms. For example:
$$2x + 3y$$
, $2x^2 + x$
 $3x + 1$

When finding the product of two binomials, we can find the product by either of the following methods:

terms in the second brackets.

Examples:

$$(2x-3)(4x+1)$$

 $= 8x^{2} + 2x - 12x - 3$
 $= 8x^{2} - 10x - 3$
(5a + 4)(7a + 2)
 $= 35a^{2} + 10a + 28a + 8$
 $= 35a^{2} + 38a + 8$

$$(3x - 2y)(3x + 8y) = 9x^{2} + 24xy - 6xy - 16y^{2}$$

= 9x² + 18xy - 16y²

$$(2x) - 3(3x^{2} - 4x + 1)$$

= $6x^{3} - 8x^{2} + 2x - 9x^{2} + 12x - 3$
= $6x^{3} - (7x^{2} + 14x - 3)$

$$(2x-3)^{2} \qquad Many \text{ mortels mess}$$

$$= (2x-3)^{2} \qquad \text{this up! You won't!}$$

$$= (2x-3)(2x-3)$$

$$= (4x^{2} - 6x - 6x + 9)$$

$$= (4x^{2} - 12x + 9)$$

 $A \infty \Omega$ Math@TD

Common Factoring

When common factoring, you must look for the <u>Greatest (ommon Factor</u> (GCF). An algebraic expression has been fully factored once 1 or -1 is the only common factor left. $-30x^2y^2 + 20x$ $= -10\chi (3xy^2 - 2)$ (heck: Expand $x = -10\chi (3xy^2 - 2)$

$$48 = (2) \cdot 3$$

$$5xy + 4x^{3} + 32x^{2}y$$

= $\chi (5y + 4x^{2} + 32xy)$

 $-14n^{6} - 20n^{5} + 12n^{3}$ = -2n^{3}(7n^{3} + 10n^{2} - 6)

Course: Grade 10 Mathematics

А∞Ω матн@тd

Factoring Quadratics:
$$x^2 + bx + c$$
 : $P_0: 1 - 25$ odd anly
 $4 - 27 - 25$ odd anly

A quadratic expression in the form $x^2 + bx + c$ can be factored into two binomials of the form (x + r) and (x + s), when f + s = b and f + s = c.

Why does this work? Look at what happens when we <u>expand</u> the following expression:

$$(x + 4)(x - 5) = x^{2} - 5 + 4x - 20$$

= x^{2} - x - 20
7 5 4.(5)

Factor the following expressions:

$$x^{2} + 9x + 20$$

 $4 + 5 = 9$
 $4 \times 5 = 20$
 $(\chi + 4)(\chi + 5)$
 2^{10}
 $\chi 5$
Check : expand -> $\chi^{2} + 5\chi + 4\chi + 20$
 $a^{2} - 10a + 24$
 $-4 + -6 = -10$
 $-4 \times -6 = 24$
 $= (a - 4)(a - 6)$
 $\chi 5$

Note: You can use the signs of b and c to determine r and s

Trinomial	Factors
b and c are positive.	(x+r)(x+s)
<i>b</i> is negative, and <i>c</i> is positive.	(x-r)(x-s)
b and c are negative.	(x - r)(x + s), where $r > s$
<i>b</i> is positive, and <i>c</i> is negative.	(x + r)(x - s), where $r > s$

 $A \infty \Omega_{\text{Math@TD}}$

Special Cases

A. Differences of Squares

Let's look at expanding first: (5n-3)(5n+3) $= 25n^2 + 15n - 15n - 9$ $= 25n^2 - 9$ $= 25n^2 - 9$ $= 49x^2 - 16$

In the examples above, try figuring out how to work backwards from the last step to the first step.

Difference of Squares- the polynomial must be a <u>binomial</u> - the 1st and 2nd terms must be perfect squares - there must be a <u>minos</u> sign between the two terms - Answer to <u> $a^2 - b^2$ </u> is <u>(a - b)(a + b)</u>

$$49n^{2} - 4 \qquad x^{2} - 25 \\ = (7n - 2)(7n + 2) \qquad = (x - 5)(x + 5)$$

$$75n^{4} - 27$$

common factor first
= 3 ($25n^{4} - 9$)
= 3 ($5n^{2} - 3$)($5n^{2} + 3$)

 $A\infty\Omega_{\text{Math@TD}}$

B. Perfect Squares

Let's look at expanding First: $(5n + 3)^2$ = (5n + 3)(5n + 3) $= 25n^2 + 15n + 15n + 9$ $= 25n^2 + 30n + 9$ $= 25n^2 + 30n + 9$

In the examples above, try figuring out how to work backwards from the last step to the first step.

- the polynomial must be of the form $a^2x^2 + 2abx + b^2$ Answer: $(a + b)^2$ or $a^2x^2 - 2abx + b^2$ Answer: $(a - b)^2$ - Remember to check <u>dab</u> by expanding

$$9a^{2} + 42a + 49$$

 $= 3a$
 $= (3a+7)^{2}$
Check $= 2(3a)(7)$
 $= 42a$

$A \infty \Omega \\ \texttt{Math@TD}$

Factoring Quadratics: $ax^2 + bx + c$

A quadratic expression in the form $ax^2 + bx + c$, where $a \neq 1$ can be factored using <u>Decomposition</u>

When using decomposition, you need to look for two numbers, p and q, that add to b and multiply to $a \times c$.

Example:

$$20x^{2} - 7x - 6$$

$$1 - 15 + 8 = -7$$

$$2 - 15x + 8x - 6$$

$$3 = 5x (4x - 3) + 2(4x - 3)$$

$$4 = (5x + 2)(4x - 3)$$

Steps:

- 1. Find two numbers, p and q, that multiply to (*ac*) and add to *b*
- Decompose the middle term into the two numbers px and qx
- 3. Common factor the 1st and 2nd half
- 4. Leftovers and Brackets

 $7v^2 + 34v - 5$

 $10a^2 - 73a - 56$

 $A \infty \Omega_{\text{Math@TD}}$

$$4x^2 - 12xy - 27y^2$$

33)
$$24m^{2} + 2m - 126$$

= $2(12m^{2} + m - 63)$
L) Aside: $28 + 27 = 1 - 756$
 $28 \times 27 = -756$
= $2(4m - 9)(3m + 7) - 12m^{2} + 28m(-27m - 63)$
= $4m(3m + 7) - 9(3m + 7)$
= $(4m - 9)(3m + 7)$

Factoring: Choosing Your Method

1) Common Factor Binomial 2 Difference of Squares Trinomial a ferfect Square $4\chi^2 - 36\chi + 81$ = $(2\chi - 9)^2$ (heck: $2(2\chi)(-9) = -36\chi$ ex 4x2-81 = (2x - 9)(2x + 9)(b) Simple Trinomial a=1 $\chi^2 + 3\chi + 2$ $= (\chi+1)(\chi+2)$ $\chi^2 = \chi$ C Decomposition a = 1 $-\frac{12}{2} + \frac{2}{2} = -10$ $-\frac{12}{2} + \frac{2}{2} = -24$ $= 8x^{2} - 10x - 3$ $= 8x^{2} - 12x + 2x - 3$ = 4x(2x - 3) + 1(2x - 3) $= (4\chi + 1)(2\chi - 3)$

72.
$$\chi^{2} - 6\chi y - 72y^{2}$$
 Notice: Like: $\chi^{2} - 6\chi - 72$
 $-12y + 6y = -6y$
 $-12y \times 6y = -72y^{2}$
 $= (\chi - 12y)(\chi + 6y)$
Chect!