

## **Factored Form of a Quadratic Relation**

Side Note: Standard y=ax2+bx+c

Factored form of a Quadratic Equation is y = a(x-s)(x-t)where s and t are the <u>2005</u> or <u>x-intrapts</u> and a is the stretch factor and direction of opening.

- 1. For the following quadratic relations:
  - i) Determine the zeros -> How? factored form
  - ii) Determine the y-intercept (c) or when  $\chi = 0$ iii) Determine the equation of the axis of symmetry  $\chi = \frac{5+t}{2}$

  - iv) Determine the coordinates of the vertex -) plug in the a.o.s.
  - v) Sketch the graph

Zeros occur when y = 0. *y-intercepts* occur when x = 0

The *vertex* can be found by plugging in the x value of the axis of symmetry and solving for y

An II - (D of the Zeros/Factored Form

happens "

-3

X

?

2. A parabola has zeros at -3 and 1. There is a y-intercept of -2. What is the equation of the parabola?

Review Question I (16 2 Sec. the ball is at 80 m. It hits the ground at 6 seconds. height  $\chi^{22}$  max neginary  $\chi^{22}$  for  $\chi^{22}$  max  $\chi^{2} = a(\chi - b)(\chi + 2)$ plug in (2,80)  $g_{0} = a(2-b)(2+2)$   $g_{0} = a(-4)(4)$   $g_{0} = -1ba$  -5 = a $\chi^{2} = -5(\chi - b)(\chi + 2)$ 

b) 
$$y = -5(0-6)(0+2)$$
  
 $y = -5(-6)(2)$   
 $y = 60$   
(6,0) -) when the ball hit the ground  
(-2,0) -) imaginary (if the ball was thrown  
from the ground)

## Stretching and Reflecting Quadratic Relations



Summary: If a GO (negatibe) -> opens down a>0 (positive) -> opens up OGAGI (ex. 0.5) -> parabola is wide (compressed) a>1 (ex. 3) -> parabola is skinny (stretched)

#### **Translations of Quadratic Functions**

More of: Introducing.....Vertex Form!

Make a table of values and make a sketch of the graph for the following equations:



Make a table of values and make a sketch of the graph for the following equations:



The general form of a "shifted" quadratic is:

$$y = (x-h)^2 + k$$

Describe the translations for  $y = (x-1)^2 + 3$ . Then make a sketch of the relation.





Describe the translations for  $\frac{y=(x+2)^2-4}{1}$ . Then make a sketch of the relation.





#### **Putting it All Together: Vertex Form of a Quadratic Relation**

And finally, give it up for.....Vertex Form!

The general form for a quadratic in Vertex Form is:

$$y = a (x-h)^2 + k$$

where  $\underline{A}$  is the stretch factor (and/or flip) and the point  $(\underline{h}, \underline{k})$  is the vertex of the parabola.

Fill in the chart

|         |                                             | $a(x-h)^2 + k$       |                    |                |
|---------|---------------------------------------------|----------------------|--------------------|----------------|
|         |                                             | $y = -2(x-1)^2 + 4$  | $y=1(x-3)^2 + 0$   | $y=3(x+4)^2+2$ |
| Expande | standard form                               | $y = -2x^2 + 4x + 2$ | $y = x^2 - 6x + 9$ | y=3x2+24x+50   |
|         | stretch factor 🔍                            | -2                   | 1                  | 3              |
|         | Vertical shift K                            | up 4                 | none               | чр 2           |
|         | Horizontal shift 🖌                          | right 7              | right 3            | lef+4          |
|         | vertex (h,k)                                | (1,4)                | ( 3, 0)            | (-4,2)         |
|         | Equation of the Axis of symmetry $\chi = h$ | x =                  | x=3                | x=-4           |
|         | x-intercepts (zeros)                        |                      |                    |                |
|         | y-intercept : when x= 0                     | 2                    | 9                  | 50             |
| look at | Max/min value                               | max 4                | min O              | min 2          |
| a E     | Max/min point (h,k)                         | max (1,4)            | min (3,0)          | min $(-4, 2)$  |
|         | When graphing, you must                     | STRETCH              | first, then SH     | IFT            |

 $y = -2(x-1)^{2} + 4$  y = -2(x-1)(x-1) + 4  $y = -2(x^{2} - x - x + 1) + 4$   $y = -2(x^{2} - 2x + 1) + 4$   $y = -2x^{2} + 4x - 2 + 4$  $y = -2x^{2} + 4x + 2$ 

### Graphing using a Table of Values



## Graphing using the Sketch of the Graph

To sketch  $\frac{y=-3(x+4)^2+3}{x+4}$ , start by drawing a sketch of  $\frac{y=x^2}{x+4}$ . Then resketch the graph applying the stretch. In this case, a is  $\frac{-3}{4}$ . Take this new sketch and then apply the shifts. In this case shift the x's and the y's  $\frac{+3}{4}$ .



 $\chi = \frac{s+t}{2}$ 

#### **Vertex Form**

Convert from Standard Form to Vertex Form by finding the zeros, AoS, and the vertex.

Find the Equation of the following parabola.



Liping in the Aos 4 factor  $(3) y = 5(x+7)(x+5) p_{x=-6}^{lugin}$  y = 5(-6+7)(-6+5) y = 5(1)(-1) y = -5

x=-6

3. Passes through 
$$(2,3)$$
 and  $(-4,3)$  and  $\max (6.$   
 $(-4,3)$   $(-4,3)$   
 $y = a (x+1)^2 + 6$   
 $ping = n (-4,3)$   
 $3 = a (-4)^2 + 6$   
 $3 = a (-4)^2 + 6$   
 $3 = a (-3)^2 + 6$   
 $3 = 9a + 6$   
 $-3 = 9a$   
 $-3 = 7$   $y = -\frac{1}{3} (x+1)^2 + 6$ 

# Completing the Square

from section 6.3

 $y=ax^2+bx+c$  can be written in vertex form  $y=a(x-h)^2+k$  by creating a perfect square – called **Completing the Square.** 

Algebraically, we consider squares to look like this:  $5^2$ , 25

24 is NOT a square, but we can add 1 to make it a square like this:  $24 = (24 + 1) - 1 = 5^{2} - 1$ Consider:  $\begin{array}{c} (x+2)^2 = x^2 + 4x + 4 \\ & \checkmark N_0 te : (x+2)(x+2) \end{array}$  $x^{2}+4x$  is NOT a square, what is missing?  $\frac{44}{(\chi^{2}+4\chi+4)}-4=(\chi+2)^{2}-4$ 

Example

$$y = (2x^{2} + 12x - 3)$$

$$y = 2(x^{2} + 6x) - 3$$

$$(2^{7})(6)^{2} = (3)^{2} = 9$$

$$y = 2(x^{2} + 6x + 9 - 9) - 3$$

$$(3) y = 2(x^{2} + 6x + 9) - 18 - 3$$

$$(4) y = 2(x + 3)^{2} - 21 \quad v(-3, -21)$$

$$(5) v_{0} + 2 \cdot (x + 3)(x + 3)$$

### **Steps to Completing the Square**

1. Factor the a from the  $x^2$  and x terms

2. Use the coefficient of the  $2^{nd}$  term, divide it by 2 and square it. Rewrite the equation by adding and subtracting this term in the brackets

3. Move the subtracted square outside the brackets by multiplying it by the a

4. Factor the perfect square and collect like terms

To to 1-4 of Completing the Square.

**Examples – Complete the Square and State the Vertex**  $y = \frac{1}{x^2 + 8x + 15}$  $\bigcup_{h=1}^{1} (x^2 + \delta x) + 15$ 

$$y = \frac{1}{(x^{2} + 8x + 16)} + \frac{16}{16} + \frac{16}{16}$$

$$y = -\frac{2}{2}x^{2} + 12x - 7$$

$$y = -\frac{2}{2}(x^{2} - 6x) - 7$$

$$y = -\frac{2}{2}(x^{2} - 6x + 9 - 9) - 7$$

$$y = -\frac{2}{2}(x^{2} - 6x + 9) + 18 - 7$$

$$y = -\frac{2}{2}(x - 3)^{2} + 11 \qquad y(3, 11)$$

$$y = \frac{1}{2} \frac{x^{2} + 6x + 5}{4x^{2} + 12x} + 5$$

$$y = \frac{1}{2} (x^{2} + 12x) + 5$$

$$\int (\frac{12}{2})^{2} = (6)^{2} = 36$$

$$y = \frac{1}{2} (x^{2} + 12x + 36) - 18 + 5$$

$$y = \frac{1}{2} (x^{2} + 12x + 36) - 18 + 5$$

$$y = \frac{1}{2} (x + 6)^{2} - 13$$

$$V (-6, -13)$$
Questions
$$5 - 10$$