Math 10D – Unit 2: Analytic Geometry

Homework 2.4 – Verifying Figures

1. Show that the line segment joining points P(1,4) and Q(5,5) is parallel to the line segment joining points R(3, -4) and S(7, -3).

Name:

Date:

 $M_{PQ} = \frac{5-4}{5-1} = \frac{1}{4} \qquad M_{RS} = -\frac{3-(-4)}{7-3} = \frac{1}{4}$ $M_{PQ} = M_{RS} :: parallel$

2. Show that TU, T(-1,7) and U(3,5), is perpendicular to VW, V(-4,1) and W(-1,7).

3. Prove what type of triangle is formed by J(2,5), K(5,-2), and L(-1,-2).

First sides

$$d_{JK} = \sqrt{58} = 7.62$$

 $d_{KL} = \sqrt{36} = 6$
 $d_{LJ} = \sqrt{58} = 7.62$; Isosceles.
Second Argles (slows)

$$M_{UK} = \frac{-7}{3}$$

 $M_{UK} = 0$
 $M_{UT} = \frac{7}{3}$
 $M_{UT} = \frac{7}{3}$
 $M_{UT} = \frac{7}{3}$

4. Show that triangle ABC is a right scalene triangle with points A(-2,2), B(-1,-2), and C(7,0).

0/AB= 117 All sides different, :. scalene $d_{BC} = \sqrt{68}$ 0 = 585 $M_{AB} = \frac{-2}{9}$ $M_{BC} = \frac{1}{4}$ $M_{BC} = \frac{1}{4}$ $M_{BC} = \frac{1}{4}$ $M_{BC} = \frac{1}{4}$ $M_{CA} = -\frac{1}{4}$ $M_{CA} =$

Merebre this is a right schere triangle

5. A polygon is defined by points A(-5,1), B(5,3), C(2,-1), and D(-8,-3). Show that the polygon is a parallelogram.

First Side

$$d_{AB} = \sqrt{0.97}$$
 opposite side equal
 $d_{BC} = \sqrt{25}$ so this is a
 $d_{CD} = \sqrt{109}$ rectangle or parallelogram
 $d_{OA} = \sqrt{257}$
Geord Stopes for "angles!!
 $M_{AB} = \frac{1}{5}$ opposite sides parallel and
 $M_{BC} = \frac{4}{3}$ consective stope are not perpendicular.
 $M_{CO} = \frac{1}{5}$... a parallelogram
 $M_{OA} = \frac{4}{3}$

6. Determine the type of quadrilateral described by P(-5,1), Q(3,3), R(4,-1), and S(-4,-3).

first Sides: dpo = 568 opposite site equal therefore (ectagle or parallelogram dor= 517' dRS= 568 $d_{sp} = \sqrt{17}$ Second angles (slps) $m_{pq} = \frac{1}{4}$ perpendieular, or 70° angle. $m_{qR} = -\frac{4}{1}$ Da Ωr . : PBRS iJa $M_{RS} = \frac{1}{4}$ rectorfle $M_{sp} = -\frac{1}{4}$