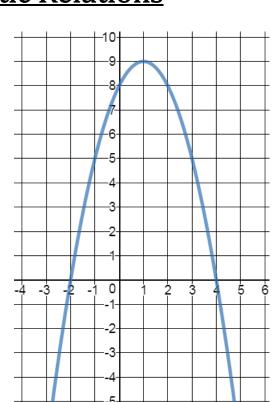
Date: _____

Interpreting Quadratic Relations

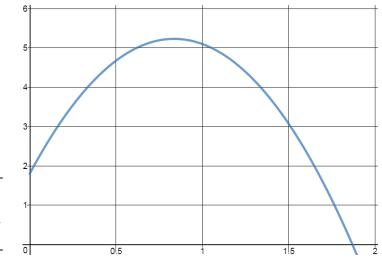
Example 1


Use graphing technology (like Desmos) to graph the relation.

Sketch your graph.

Identify the key features.

$$y = -x^2 + 2x + 8$$


- a. vertex: _____
- b. equation of axis of symmetry: _____
- c. direction of opening: _____
- d. max or min value: _____
- e. y-intercepts: _____
- f. x-intercepts: _____

Example 2

The equation $h = -4.9d^2 + 8.2d + 1.8$ models the path of a Canadian High School shot put throw, where h is the height of the shot put in metres and d is the horizontal distance from where it was released in metres.

- a. Use the graphing technology to graph the relation.
- b. From what height was the shot put released? _____
- c. How far did the shot put go? _____
- d. How high was the shot put 1.5 m away from where it was released?

Example 3

The data represents the height of a baseball after being hit.

a. Plot the data using graphing technology. Sketch your graph.

Time (s)	Height (m)
0	2
1	27
2	42
3	48
4	43
5	29
6	5

				5.	
			33		

- b. Find the equation of best fit. (round to one decimal place)
- c. The maximum height of the ball is ______.

d. The ball hits the ground after ______.

Homework:

- 1. A football is punted into the air. Its height, H, in metres, after t seconds is modelled by the equation: $H = -4.9(t 2.4)^2 + 29$. Use graphing technology to graph the equation and answer the following questions.
 - a. At what height was the football kicked?
 - b. What is the maximum height of the football?
 - c. How high was the football after 2 seconds? Was it going up or down at that point?
 - d. Was the ball still in the air at 5 seconds?
- 2. A model rocket is fired off of a cliff. The rocket's flight is modelled with the equation: $H = -4.9t^2 + 45t + 87.5$. Use graphing technology to graph the equation and answer the following questions.
 - a. What is the maximum height of the rocket?
 - b. When does the rocket reach maximum height?
 - c. How high is the cliff?
- 3. It is determined that the safe stopping distance, d (in metres) for a heavy aircraft travelling at v km/h is given by the equation: $d = 0.003(6v^2 + 400v + 50000)$.
 - a. What is the safe stopping distance if the plane is travelling at 100 km/h?
 - b. If there is only 200 m to stop, what is the max speed a plane can be travelling?
- 4. It is found that the safe stopping distance (in metres) for a boat travelling at v km/h is given by the equation: $d = 0.002(2v^2 + 10v + 3000)$.
 - a. What is the safe stopping distance for a boat going 12 km/h?
 - b. Determine the speed at which the boat is travelling to be able to stop in 15 m.

Answers:

1.					
a.	0.776 m		b. 29 m		
C.	28.22 m, going up		d. No		
2.					
a.	190.8 m	b.	4.59 s	c.	87.5 m
3.					
a.	450 km/h	b.	29 km/h		
4.					
a.	6.8 m	b.	45 km/h		