Name:     ID: 
 
Email: 

Math11UC W15 - Exam Review Multiple Choice

Multiple Choice
Identify the choice that best completes the statement or answers the question. Write the letter of your choice in the appropriate space on the Answer Sheet.
 

 1. 

Which relation is not a function?
a.
mc001-1.jpg
c.
mc001-3.jpg
b.
mc001-2.jpg
d.
mc001-4.jpg
 

 2. 

What is the range of the function?
mc002-1.jpg
a.
R = {1, 5, 4, 7}
c.
R = {1, 2, 3, 4, 5, 6, 7}
b.
R = {1, 2, 3, 6}
d.
R = {2, 5, 4, 7}
 

 3. 

Evaluate mc003-1.jpg for {(0, 6), (3, 12), (6, 54), (2, 6)}.
a.
0
c.
6
b.
2
d.
54
 

 4. 

A car salesman is paid a commission based on the function mc004-1.jpg where p is the sale price of a vehicle. How much will he earn from a car that sells for $15 000?
a.
300
c.
400
b.
398
d.
3100
 

 5. 

Evaluate mc005-1.jpg if x = -2
a.
-2
c.
3
b.
-1
d.
13
 

 6. 

Which relation is a function?
a.
mc006-1.jpg
c.
mc006-3.jpg
b.
mc006-2.jpg
d.
mc006-4.jpg
 

 7. 

Which function includes a translation of 3 units to the left?
a.
mc007-1.jpg
c.
mc007-3.jpg
b.
mc007-2.jpg
d.
mc007-4.jpg
 

 8. 

Which equation shows a translation of 3 left and vertical compression by a factor of 2 to the graph of mc008-1.jpg?
a.
mc008-2.jpg
c.
mc008-4.jpg
b.
mc008-3.jpg
d.
mc008-5.jpg
 

 9. 

Kevin threw a ball straight up with an initial speed of 20 metres per second. The function mc009-1.jpg describes the ball’s height, in metres, t seconds after Kevin threw it. What are the coordinates of the vertex?
a.
mc009-2.jpg
c.
(20, 2)
b.
mc009-3.jpg
d.
mc009-4.jpg
 

 10. 

What are the domain and range of the function mc010-1.jpg?
a.
D = {x mc010-2.jpg R}   R = {y mc010-3.jpg R}
b.
D = {x mc010-4.jpg R| 0 mc010-5.jpg x mc010-6.jpg 3}   R = {y mc010-7.jpg R}
c.
D = {x mc010-8.jpg R| x mc010-9.jpg 3}   R = {y mc010-10.jpg R}
d.
D = {x mc010-11.jpg R}   R = {y mc010-12.jpg R|y mc010-13.jpg 3}
 

 11. 

Which graph of the given quadratics shows the range R = {y mc011-1.jpg 1|y mc011-2.jpg R}
a.
mc011-3.jpg
c.
mc011-5.jpg
b.
mc011-4.jpg
d.
mc011-6.jpg
 

 12. 

Expand and simplify mc012-1.jpg.
a.
mc012-2.jpg
c.
mc012-4.jpg
b.
mc012-3.jpg
d.
mc012-5.jpg
 

 13. 

Which shows the polynomial fully factored?
mc013-1.jpg
a.
mc013-2.jpg
c.
mc013-4.jpg
b.
mc013-3.jpg
d.
mc013-5.jpg
 

 14. 

Which shows the factorization of the polynomial?
mc014-1.jpg
a.
mc014-2.jpg
c.
mc014-4.jpg
b.
mc014-3.jpg
d.
mc014-5.jpg
 

 15. 

Factor the quadratic equation fully.
mc015-1.jpg
a.
mc015-2.jpg
c.
mc015-4.jpg
b.
mc015-3.jpg
d.
mc015-5.jpg
 

 16. 

Factor the trinomial mc016-1.jpg.
a.
mc016-2.jpg
c.
mc016-4.jpg
b.
mc016-3.jpg
d.
mc016-5.jpg
 

 17. 

Which shows the factors of the trinomial?
mc017-1.jpg
a.
mc017-2.jpg
c.
mc017-4.jpg
b.
mc017-3.jpg
d.
mc017-5.jpg
 

 18. 

Which shows the factorizations of the polynomial mc018-1.jpg?
a.
mc018-2.jpg
c.
mc018-4.jpg
b.
mc018-3.jpg
d.
mc018-5.jpg
 

 19. 

Which shows the quadratic function expressed in factored form?
mc019-1.jpg
a.
mc019-2.jpg
c.
mc019-4.jpg
b.
mc019-3.jpg
d.
mc019-5.jpg
 

 20. 

What is the axis of symmetry for the function mc020-1.jpg?
a.
x = -3
c.
x = 6.5
b.
x = 3.5
d.
x = 10
 

 21. 

A rocket is shot into the air. The height of the rocket is modelled by the function mc021-1.jpg, where h(t) is the height in metres and t is the time in seconds. When will the rocket hit the ground?
a.
4.5 seconds
c.
9 seconds
b.
5 seconds
d.
45 seconds
 

 22. 

What are the coordinated of the vertex of mc022-1.jpg?
a.
(-2, 5)
c.
(-2, -24)
b.
(1.5, -24.5)
d.
(5, 0)
 

 23. 

A fountain shoots water from a nozzle at its top. The function mc023-1.jpg describes the height of the water h(t), in metres, t seconds after it leaves the nozzle. What is the maximum height of the water spout?
a.
1 metre
c.
15 metres
b.
3 metres
d.
20 metres
 

 24. 

Solve.
mc024-1.jpg
a.
x = -2, 7
c.
x = 2, -7
b.
x = 2, 7
d.
x = -2, -7
 

 25. 

For which quadratic equation is x = 2 a root of the equation?
a.
mc025-1.jpg
c.
mc025-3.jpg
b.
mc025-2.jpg
d.
mc025-4.jpg
 

 26. 

Use factoring to solve mc026-1.jpg.
a.
x = mc026-2.jpg and x = 5
c.
x = mc026-4.jpg and x = -5
b.
x = mc026-3.jpg and x = -5
d.
x = mc026-5.jpg and x = 5
 

 27. 

A skateboard company models its profit with the function Pmc027-1.jpg, where x is the number, in thousands, that the company sells, and P(x) is the profit in tens of thousands of dollars. How many skateboards must the company sell to break even? Use factoring to solve.
a.
at 1500 and 5000 skateboards
c.
at 1.5 and 5 skateboards
b.
at 150 and 500 skateboards
d.
at 1500 and 50 000 skateboards
 

 28. 

Which coordinate is the vertex of the function mc028-1.jpg
a.
(12, –9)
c.
(3, –9)
b.
(9, –3)
d.
(3, 9)
 

 29. 

Which function represents mc029-1.jpg written in standard form?
a.
mc029-2.jpg
c.
mc029-4.jpg
b.
mc029-3.jpg
d.
mc029-5.jpg
 

 30. 

Which equation represents the equation of the axis of symmetry for mc030-1.jpg?
a.
mc030-2.jpg
c.
mc030-4.jpg
b.
mc030-3.jpg
d.
mc030-5.jpg
 

 31. 

Which graph represents the function mc031-1.jpg?
a.
mc031-2.jpg
c.
mc031-4.jpg
b.
mc031-3.jpg
d.
mc031-5.jpg
 

 32. 

What is the factored form of mc032-1.jpg
a.
mc032-2.jpg
c.
mc032-4.jpg
b.
mc032-3.jpg
d.
mc032-5.jpg
 

 33. 

What information can you gather immediately from a quadratic function written in standard form?
a.
vertex
c.
y-intercept
b.
equation of the axis of symmetry
d.
domain
 

 34. 

Identify the values of a, b, and c you would use to substitute into the quadratic formula to solve mc034-1.jpg
(Remember: your equation needs to be in standard form mc034-2.jpg).
a.
a = –5; b = 3; c = –3
c.
a = 1; b = –5; c = –18
b.
a = 1; b = 5; c = –18
d.
a = 1; b = 1; c = –12
 

 35. 

Use the quadratic formula to solve mc035-1.jpg. Round your answer to two decimal places.
a.
–0.81
c.
–0.81 and 1.64
b.
1.64
d.
no real solution
 

 36. 

Use the quadratic formula to solve mc036-1.jpg. Round your answer to two decimal places.
a.
–5.43 and 1.93
c.
–4.5 and 0.98
b.
–1.93 and 5.43
d.
no real solution
 

 37. 

A golf ball is chipped out of a sand trap along a path that can be modelled by the quadratic function mc037-1.jpg, where time, t, is in seconds and height, h(t), is in metres. Use the quadratic formula to determine where the ball will land to the nearest hundredth.
a.
0 m
c.
7.26 m
b.
4.81 m
d.
88.47 m
 

 38. 

A disc is thrown into the air and follows a path modelled by the function mc038-1.jpg, where time, t, is in seconds and height, h(t), is in metres. When does the disc hit the ground again?
a.
1.0 s
c.
2.8 s
b.
1.4 s
d.
3.0 s
 

 39. 

A rocket is launched into the sky and follows a path modelled by the function mc039-1.jpg, where time, t, is in seconds and height, h(t), is in metres. Approximately how high will the rocket be after 9 seconds?
a.
145 m
c.
187 m
b.
164 m
d.
200 m
 
 
nar001-1.jpg
 

 40. 

Given the triangle above, if a = 9, b = 15, and c = 12, what are the primary trigonometric ratios for ÐA?
a.
sin A = mc040-1.jpg, cos A = mc040-2.jpg, tan A = mc040-3.jpg
c.
sin A = mc040-7.jpg, cos A = mc040-8.jpg, tan A = mc040-9.jpg
b.
sin A = mc040-4.jpg, cos A = mc040-5.jpg, tan A = mc040-6.jpg
d.
sin A = mc040-10.jpg, cos A = mc040-11.jpg, tan A = mc040-12.jpg
 

 41. 

Given triangle ABC above, if ÐA = 38° and b = 4.47 cm, determine a to the nearest hundredth.
a.
7.26 cm
c.
3.52 cm
b.
2.75 cm
d.
5.67 cm
 

 42. 

Given the figure above, if a = 3.4 m and c = 1.8 m, determine ÐC to the nearest degree.
a.
32°
c.
58°
b.
62°
d.
28°
 

 43. 

The tallest church tower in the Netherlands is the Dom Tower in Utrecht.  If the angle of elevation to the top of the tower is 77° when 25.9 m from the base, what is the height of the Dom Tower to the nearest metre.
a.
25 m
c.
112 m
b.
115 m
d.
27 m
 

 44. 

Guillermo is standing 112.5 m from an office building.  The top of the building is at an angle of elevation of 39°.  If Guillermo’s eyes are 1.6 m off the ground, what is the height of the building to the nearest tenth of a metre?
a.
87.4 m
c.
89.0 m
b.
92.7 m
d.
91.1 m
 
 
nar002-1.jpg
 

 45. 

Given the figure above, if l = 3.4, ÐJ = 28°, and j = 3.2, use the sine law to determine ÐL to the nearest degree.
a.
60°
c.
27°
b.
30°
d.
26°
 
 
nar003-1.jpg
 

 46. 

Given the figure above, if ÐDCA = 106°, b = 27.6 cm, and c = 41.3 cm, use the sine law to calculate ÐB to the nearest degree.
a.
55°
c.
40°
b.
44°
d.
none of the above
 
 
nar004-1.jpg
 

 47. 

For triangle HIJ, if ÐI = 70°, j = 5.35 cm, and h = 3.80 cm, use the cosine law to solve for side i. Round your answer to the nearest hundredth of a centimetre.
a.
29.16 cm
c.
5.40 cm
b.
5.40 cm
d.
none of the above
 

 48. 

For triangle HIJ, if h = 46, i = 73, and j = 58, use the cosine law to solve for ÐI. Round your answer to the nearest degree.
a.
39°
c.
92°
b.
53°
d.
88°
 

 49. 

Using triangle GHI below, if ÐG and i are known, which can be used to solve for g?
mc049-1.jpg
a.
sine law
c.
both a and b
b.
primary trigonometric ratios
d.
neither a nor b
 
 
nar005-1.jpg
 

 50. 

Given triangle DEF, if e, d, and f are known, which can be used to solve for ÐF?
a.
sine law
c.
primary trigonometric ratios
b.
cosine law
d.
none of the above
 

 51. 

Given triangle DEF, if ÐD, ÐE, f, and e are known, which can be used to solve for d?
a.
sine law
c.
either a or b
b.
cosine law
d.
neither a nor b
 

 52. 

The graph depicts the height in metres of a bouncing ball with respect to time in seconds (given the friction in the environment to be negligible). What is the period of the graph?

mc052-1.jpg
a.
2 seconds
c.
4 seconds
b.
10 seconds
d.
5 seconds
 

 53. 

What is the equation of the axis?
a.
the horizontal line that intersects the maximum value of a periodic function
b.
twice the sum of the maximum and minimum functional values
c.
the y-intercept of a periodic function
d.
the horizontal line halfway between the maximum and minimum value of a periodic function
 

 54. 

What is the amplitude?
a.
the distance between the maximum and minimum values of the function
b.
the length of one cycle
c.
the distance between the equation of the axis and either a maximum or minimum value of the function
d.
the number of cycles shown
 

 55. 

What is the amplitude of the function?

mc055-1.jpg
a.
7
c.
10
b.
14
d.
0
 

 56. 

Consider a Ferris wheel which loads passengers at a height of 1 metre above the ground a carries them to a height of at most 15 metres. What is the amplitude of the function which models the height of a passenger above ground while in constant motion?
a.
7
c.
1
b.
14
d.
15
 

 57. 

What can be modelled by a sinusoidal function?
a.
the temperature of a cooler with respect to time
b.
the motion of a kite with respect to time
c.
the balance of a mortgage with respect to time
d.
the height of a boy on a swing with respect to time
 

 58. 

State the transformation of f(x) = sin x + 4.
a.
horizontal translation left 4 units
b.
vertical translation downward 4 units
c.
vertical translation upward 4 units
d.
horizontal translation right 4 units
 

 59. 

State the transformation of f(x) = sin(x – 30°)
a.
horizontal translation right 30°
c.
vertical translation upward 30°
b.
horizontal translation left 30°
d.
vertical translation downward 30°
 

 60. 

What is the equation of the axis of the graph?

mc060-1.jpg
a.
y = 2
c.
y = 7
b.
x = 2
d.
x = 7
 

 61. 

What is the amplitude of the function 3sin(x – 4)?
a.
3
c.
1
b.
2
d.
4
 

 62. 

Which of the following is equivalent to mc062-1.jpg?
a.
mc062-2.jpg
c.
mc062-4.jpg
b.
mc062-3.jpg
d.
mc062-5.jpg
 

 63. 

Which of the following is equivalent to mc063-1.jpg?
a.
mc063-2.jpg
c.
mc063-4.jpg
b.
mc063-3.jpg
d.
mc063-5.jpg
 

 64. 

Which of the following is equivalent to mc064-1.jpg?
a.
mc064-2.jpg
c.
mc064-4.jpg
b.
mc064-3.jpg
d.
mc064-5.jpg
 

 65. 

Simplify mc065-1.jpg.
a.
mc065-2.jpg
c.
mc065-4.jpg
b.
mc065-3.jpg
d.
mc065-5.jpg
 

 66. 

Which of the following is equivalent to mc066-1.jpg?
a.
mc066-2.jpg
c.
-mc066-4.jpg
b.
mc066-3.jpg
d.
-36
 

 67. 

Evaluate mc067-1.jpg.
a.
mc067-2.jpg
c.
mc067-4.jpg
b.
mc067-3.jpg
d.
mc067-5.jpg
 

 68. 

Which of the following is equivalent to mc068-1.jpg?
a.
mc068-2.jpg
c.
mc068-4.jpg
b.
mc068-3.jpg
d.
mc068-5.jpg
 

 69. 

Write mc069-1.jpg in radical form.
a.
mc069-2.jpg
c.
mc069-4.jpg
b.
mc069-3.jpg
d.
mc069-5.jpg
 

 70. 

Write mc070-1.jpg in exponential form.
a.
mc070-2.jpg
c.
mc070-4.jpg
b.
mc070-3.jpg
d.
mc070-5.jpg
 

 71. 

Left untreated, algae in a reservoir reproduce at the rate of 5% per week. Currently, the algae cover one eighth of the reservoir. An algebraic model of this situation is mc071-1.jpg, where mc071-2.jpg is the percent covered after w weeks. What does 0.125 represent in this situation?
a.
the depth of the algae in the water
b.
the fraction of the algae that reproduce each week
c.
the rate of algae reproduction per week
d.
the initial percentage of the reservoir that is covered by algae
 

 72. 

Left untreated, algae in a lake reproduce at the rate of 4.5% per week. Currently, the algae cover one tenth of the reservoir. An algebraic model of this situation is mc072-1.jpg, where mc072-2.jpg is the percent covered after w weeks. If the algae continues to go untreated, what percentage of the reservoir will be covered in algae 15 weeks from now? Round your answer to the nearest percent.
a.
19
c.
26
b.
2
d.
12
 

 73. 

There are 2000 yeast cells in a culture. The number of cells grows at a rate of 15% per day. The function that models the growth of the yeast cells is mc073-1.jpg, where N is the number of yeast cells d days after the culture is started, mc073-2.jpgis the initial population, and r is the growth rate. How many cells will there be in the culture after two weeks? Round your answer to the nearest whole number.
a.
5 290 000
c.
2645
b.
21 347
d.
14 151
 

 74. 

Identify the growth rate in the following algebraic model: mc074-1.jpg.
a.
106%
c.
12%
b.
30%
d.
6%
 

 75. 

In the following exponential growth model, what does the 0.35 represent? mc075-1.jpg
a.
the growth rate
b.
the initial amount
c.
the time since the initial period
d.
the percent that doubles in t time periods
 

 76. 

A new car costs $26 000. It loses 16% of its value each year after it is purchased. Determine the value of the car after 40 months.
a.
$11 938.38
c.
$2433.02
b.
$5781.49
d.
$14 540.22
 

 77. 

Darien borrows $4265 to help pay for university tuition at an annual rate of 7%. He starts to pay for the simple interest loan in 4 years. How much interest will have been added to the loan at that time?
a.
$1194.20
c.
$5459.20
b.
$1325.54
d.
$5590.54
 

 78. 

An investment of $850 earns 6.75%/a. Calculate the value of the investment when the interest is compounded quarterly for 5 years.
a.
$1187.87
c.
$3138.89
b.
$924.18
d.
$1178.31
 

 79. 

Calculate the amount you would end up with if you invested $4000 at 11.2% compounded monthly for 5 years.
a.
$6801.17
c.
$4190.18
b.
$6984.53
d.
$4471.73
 

 80. 

Yelena inherits $125 000. She wants to invest part of it for her college fund. How much should she invest in a GIC earning 9.5%/a compounded monthly to ensure that she has $100 000 in savings 3 years from now?
a.
$33 653.53
c.
$90 971.32
b.
$59 687.94
d.
$75 285.86
 

 81. 

Determine the present value of a loan of $24 150 that is due in 7 years. The interest rate is 8%/a compounded quarterly.
a.
$14 091.29
c.
$21 024.03
b.
$2799.32
d.
$13 871.15
 

 82. 

Over the course of 8 years, Serge makes deposits of $250 every 6 months into an account that pays 3.75%/a interest compounded semi-annually. How much interest will Serge have earned over the 8-year term?
a.
$722.09
c.
$136.29
b.
$1369.88
d.
$614.86
 

 83. 

Calculate the regular deposit made four times a year for 6 years at 7%/a compounded quarterly that will accumulate to an amount of $8000.
a.
$559.18
c.
$67.03
b.
$638.09
d.
$271.09
 

 84. 

How much should be deposited into an account to set up an annuity that will provide equal payments of $100 per month over the next 4 years? The annuity will earn 4.8%/a compounded monthly.
a.
$3876.32
c.
$1863.84
b.
$2734.92
d.
$4359.42
 

 85. 

A $21 000 car loan is charged 3.9%/a interest compounded monthly. Determine the monthly payments needed to pay the loan off in 5 years.
a.
$385.80
c.
$291.35
b.
$350.03
d.
$300.84
 



 
         Start Over