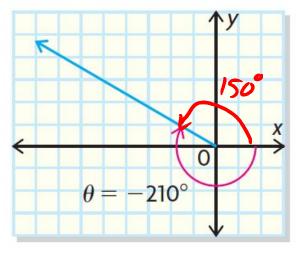
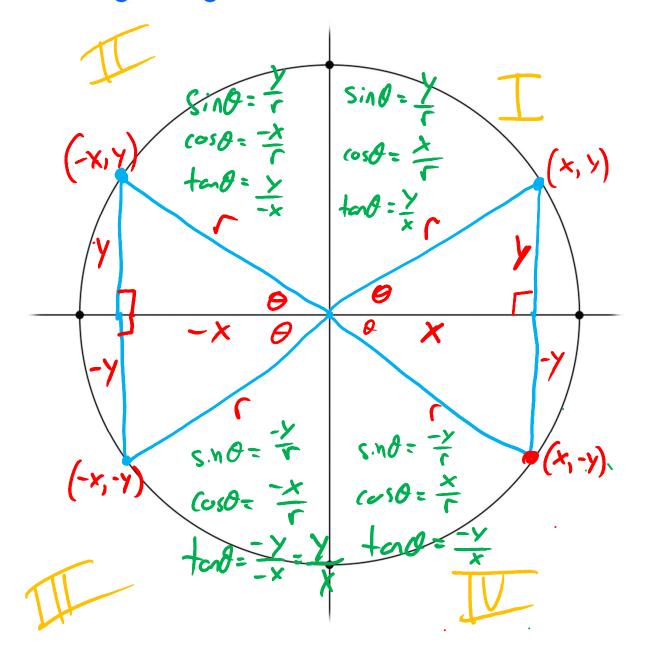

Chapter 5.3 & 5.4

The Big Idea: Every ratio exists twice between 0° and 360°

$$\sin 30 = 0.5$$
 $\sin 150 = 0.5$


Lots of Terminology: quadrant 1 quadrant 2 terminal arm related θ principal acute angle angle X 0°, 760° vertexinitial arm quadrant 3 quadrant 4

Regative angle


= clockwise

positive angle

= counter clockwise

Looking at trig ratios on a Cartesian Plane:

Equivalent Ration

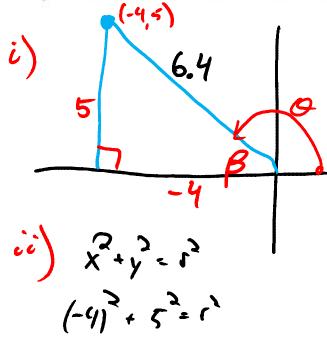
$$S.MB = S.N(180-B)$$
 $(OSB = (OS(360-B))$
 $TANB = TAN(180+B)$
 $TANB = TAN(180+B)$
 $TANB = TAN(180+B)$

Find the second equivalent trig ratio:

1.
$$\sin 20 = \sin (180 - 20) = \sin |60|$$

2.
$$\cos 280 = (\cos (360 - 280) = (\cos 80)$$

4.
$$\csc 192 = \csc(180 - 192) = \csc(-12) = \csc(-348)$$

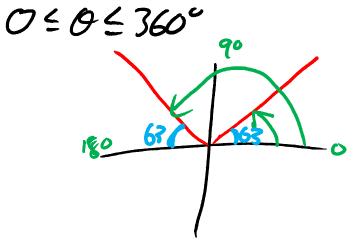

5.
$$\sec 18 = \sec (360 - 18) = \sec (342)$$

6.
$$\cot 215 = \cot (180 + 215) = \cot 395 = \cot 35$$

Each point lies on the terminal arm of angle θ in standard position.

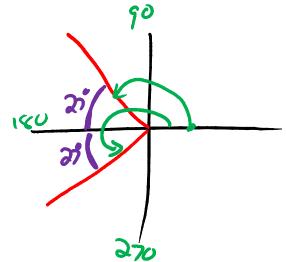
- i) Draw a sketch of each angle θ .
- ii) Determine the value of r to the nearest tenth.
- iii) Determine the primary trigonometric ratios for angle θ .
- iv) Calculate the value of θ to the nearest degree.

P(-4,5)

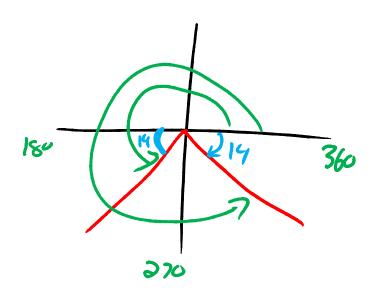


iii)
$$s.n\theta = \frac{5}{6.9}$$
 $tan\theta = \frac{5}{-9}$
 $cos\theta = \frac{-9}{6.9}$
 $only use one!$
 $iv) \theta = sr'(\frac{5}{6.9}) \theta = cos'(\frac{-9}{6.9}) \theta = tan'(\frac{5}{-9})$
 $\theta = 180-51$
 $\theta = 129^{\circ}$
 $\theta = 129^{\circ}$
 $\theta = 129^{\circ}$

Use each trigonometric ratio to determine BOTH values of θ between 0° and 360°.


1.
$$\sin \theta = 0.8942$$

$$0 = 5.5 - (0.8942)$$


Use each trigonometric ratio to determine BOTH values of θ between 0° and 360°.

2.
$$\cos \theta = -0.8931$$

Use each trigonometric ratio to determine BOTH values of θ between 0° and 360°.

3.
$$\csc \theta = -4.2013$$

