

Quadratic Vocabulary:

A quadratic relation is modeled by a smooth symmetrical curve, known as a ______.

The **key features** of a parabola are:

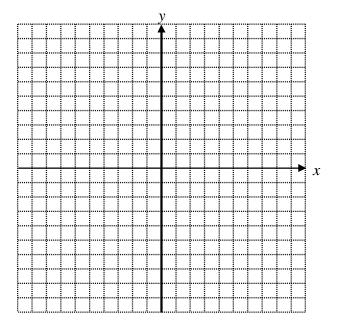
zeros	
y-intercept	
vertex	
axis of symmetry	
optimal value	

The Basic Parabola:

1. Complete the table of values for the relation $y = x^2$, including finite differences.

x	\boldsymbol{x}^2	у	1 st	2 nd
-4				
-3				
-2				
-1				
0				
1				
2				
3				
4				

2. Plot the data on the coordinate grid. Draw a curve of best fit.



Summarize the properties of the basic quadratic relation $y = x^2$.

- 1. The vertex is _____ and is also known as the _____.
- 2. The optimum value is _____ and it is a _____ because

·

3. The axis of symmetry is ______. The graph is symmetrical about _____.

- 4. The zeros of the relation are ______.
- 5. To graph the basic parabola without creating a table of values first:
 - Start at the vertex: (0,0).
 - Go right 1 and up 1, plot a point.

Go right 1 and up 3, plot a point.

Go right 1 and up 5, plot a point.

These points are located on the right side of the y-axis.

- Find the points on the left side using symmetry.

 OR repeat the pattern going left rather than right.
- Draw a curve of best fit.

Name:			
-------	--	--	--

	Function	Value of a in $y = ax^2$	Direction of Opening	Vertex	Axis of Symmetry	Same shape as $y = x^2$?
a.	$y = x^2$	1	up	(0, 0)	x = 0	
b.	$y = 2x^2$					
c.	$y = 0.5x^2$					
d.	$y = -2x^2$					
e.	$y = -0.5x^2$					

How does the value of *a* affect the basic parabola?

The **sign** of *a* indicates _____

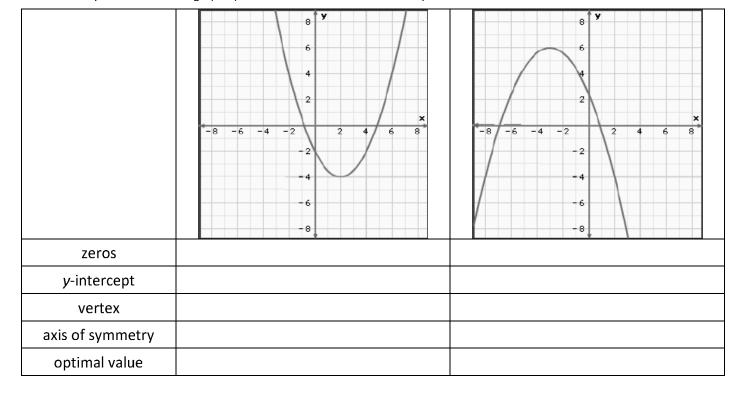
- when a is positive, the parabola _____ and has a _____
- when *a* is negative, the parabola ______ and has a ______ ; this is known as a

The **value** of *a* describes

- when a is between 0 and 1, the parabola is _____ than $y = x^2$; known as a _____
- when a is greater than 1, the parabola is ______ than $y = x^2$, known as a _____

Example 1

State the key features of each graph. (Round answers to the nearest 0.5.)



For each of the following, (i) state the transformations, and (ii) graph the parabola.

	$y = -2x^2$	$y = {}^{1}/_{4}x^{2}$	
(I) TRANSFORMATIONS			
(II) GRAPH	x	x	