Common Factoring and Difference of Squares

The opposite of expanding is ______.

A ______ is an expression that can be divided into each term in a polynomial.

For example, 3x is a common factor for the polynomial $9x^3 - 15x^2 + 3x$, because 3x divides evenly into each of the three terms.

To Common Factor:

Determine what the greatest common factor is for all the terms in the polynomial.
Divide each term in the polynomial by the common factor.
Write the answer in proper form: GCF ("left overs").

Example 1

a.
$$8x^4 - 4x^3 + 20x^2$$

b.
$$25x^2 - 100$$

c.
$$-54x^4 + 135x$$

A number is a _____

if when square rooted the result is a whole number.

For example, 9, 16, 25, 81 and 100 are all perfect squares because when square rooted the answers are whole numbers $\rightarrow \sqrt{9} = 3$, $\sqrt{16} = 4$, $\sqrt{25} = 5$, $\sqrt{81} = 9$ and $\sqrt{100} = 10$.

If a variable has an **even** exponent then it is considered a perfect square.

To determine the square root of a variable, keep the base and divide the exponent by 2. For example, x^8 is a perfect square, its square root is x^4 .

A difference of squares is a binomial with two perfect square terms being subtracted.

To Factor Using Difference of Squares:

- 1. Check to ensure that difference of squares factoring is possible.
- $9x^2 16$ Two terms both terms perfect squares, even powers

subtraction

- 2. Create two sets of brackets.
- 3. Square root the first term of the polynomial and place one in each bracket in first position
- 4. Square root the second term of the polynomial and place one in each bracket in second position.
- 5. Separate the terms in one bracket with + and in the other with -.

Example 2

a.
$$x^2 - 25$$

b.
$$16x^2 - 1y^2$$

c.
$$81x^2 - 4y^4$$