
MBF 3C1 Name: _____ Collecting ξ Organizing One-Variable Data

One-variable data sets give measures of one attribute. They can be represented with:

TYPE OF DATA	DEFINITION	EXAMPLE
Categorical Data	Data that is usually recorded as a and not a When recorded as a number, it is important to know what the number <i>represents</i> not its numerical value.	
Continuous Data	This is numerical (or quantitative) data where values can exist recorded values, so are allowed	Class interval Tal 0 - 39 I 40 - 79 IIII 80 - 119 IIII
Discrete Data	This is numerical data, where values exist between recorded values, so decimals are There is a fixed number of possible values.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

MBF 3C1		
Example 1		
For each state the data type.		
a. Number of mugs of coffee drank in a day.		
b. Type of pet at home (eg. dog, cat, bird, reptile, etc.)		
c. Number of pets at home.		
d. Amount of coffee in mL drank in a day.		

For *categorical* and *discrete data*, **classes** are used to sort the data in a frequency table.

Example 2

Organize the following data about favourite types of movies into a frequency table.

sci fi	romance	comedy	action	romance	drama
romance	sci fi	action	romance	comedy	sci fi
romance	action	sci fi	comedy	romance	action
action	comedy				

CLASS	TALLY	FREQUENCY
Total		

MBF 3C1

Name:

For *continuous data*, **class intervals** are used to sort the data in a frequency table. When making frequency tables with class intervals,

- make sure intervals don't overlap by using decimals if necessary
- have a reasonable number of intervals, not too few nor too many
 - 1. find the range (highest value lowest value)
 - 2. find interval length (divide range by 5 and 20 (the min and max interval length))

Example 3

Use a frequency table to organize the pulses of 30 people.

66	79	53	81	84	76	76	67	64	83	
92	56	67	77	91	61	71	86	73	87	
71	67	71	81	86	62	77	91	72	68	
range = 92 - = 39	53		39 ÷	5 = 7.8	and 39	÷20 =	1.9, so i	let the i	nterval l	be 5

INTERVAL	TALLY	FREQUENCY
Total		