Displaying One-Variable Data

A **bar graph** uses bars to display discrete data which has been organized into classes. The bars have spaces between them since the data is _____

A **histogram** uses bars to display continuous data which has been organized into intervals. The bars in a histogram touch since the data is ______.

Bar Graph

Histogram

Example 1

Use the frequency table from Example 2 (about movies) from DAY 2 lesson to construct a bar graph. Process:

- 1. organize data into frequency table with classes if necessary
- 2. draw and label axes
 - * labels go under bars
- 3. plot bars
 - * bars must have spaces between them
- 4. add a title

Example 2

Use the frequency table from Example 3 (about pulses) from DAY 2 lesson to construct a histogram. Process:

- 1. organize data into frequency table with class intervals if necessary
- 2. draw and label axes
 - * labels go between bars
- 3. plot bars
 - * bars cannot have spaces between them
- 4. add a title

Bar graphs and histograms can take on any of several common shapes. Among these distributions are both *SYMMETRICAL* and *SKEWED* graphs.

SYMMETRICAL DISTRIBUTIONS can be:

- 1. _____ Distributions
 - commonly referred to as ______ or mound-shaped distributions
 - the middle interval(s) will have the greatest frequency (i.e. the tallest bar)
 - all other intervals will have decreasing frequencies as you move away from the centre of the graph (i.e. the bars get smaller as you move out to the edges)

Example: A pair of dice were rolled 75 times. After each roll, their sum was recorded and graphed.

Sum on dice	m on dice Frequency	
2	1	
3	3	
4	6	
5	8	
6	11	
7	15	
8	12	
9	9	
10	5	
11	4	
12	1	

Note: Even though it isn't perfectly symmetrical, it still fits the definition of a normal distribution.

2. Distributions

- these look like inverted normal distributions
- the intervals with the highest frequencies (i.e. tallest bars) are at either end of the graph and the interval with the lowest frequency is in the centre
- frequencies increase as you move away from the centre of the graph.

Example: Grade 6 and grade 1 students each measured, recorded and graphed their heights.

Height (cm)	Freq.
105.5-110.5	1
110.5-115.5	11
115.5-120.5	8
120.5-125.5	5
125.5-130.5	3
130.5-135.5	2
135.5-140.5	0
140.5-145.5	2
145.5-150.5	5
150.5-155.5	8
155.5-160.5	11

3. _____ Distributions

• the frequencies of each interval are approximately equal

Example: A die is rolled 50 times. The face is recorded and graphed.

Die Face	Frequency	
1	8	
2	9	
3	8	
4	10	
5	7	
6	8	

SKEWED DISTRIBUTIONS can be:

1. _____ Graphs

• the bars with the highest frequencies are on the left side and the frequencies decrease as you move right

Note: Even though there is a low-frequency bar on the left side, the trend is still right-skewed.

2. _____ Graphs

• the bars with the highest frequencies are on the right side and the frequencies decrease as you move left

Note: Even though there is a low-frequency bar on the right side, the trend is still left-skewed.

Example 3

Describe the distribution for each graph.

a.

b.

A circle graph uses sectors of a circle to show how discrete data is divided.

Example 4

Use the frequency table from Example 2 (about movies) from DAY 2 to construct a circle graph.

Process:

- 1. organize data into frequency table with classes if necessary
- calculate the percent of each class* leave as decimal for future calculations
- 3. use the percentages to determine how many degrees each class consists of
- 4. draw a circle and divide it according to the calculations using a protractor

- 5. either label each section or provide a legend
- 6. add a title

CLASS	FREQUENCY	PERCENT	DEGREES
action	5	$\frac{5}{20}$ = 0.25	0.25×360° = 90°
comedy	4		
drama	1		
romance	6		
sci fi	4		
TOTAL	20	1.0	360°

Name:	

A **pictograph** uses images to display discrete data. Often 1 image represents more than 1 data piece. This type of graph is less accurate than other graphing styles.

Example 5

Use the frequency table from Example 2 (about movies) from DAY 2 to construct a pictograph.

Process:

- 1. organize data into frequency table with classes if necessary
- 2. draw and label axes
 - * labels go under columns or beside rows of pictures
- 3. plot pictures
 - * each picture represents a number of data pieces this value must be stated
- 4. add a title