Theoretical Probability

Probabilities can be written in 3 ways:

			Example 1	Example 2		
i. as a fraction	# of successful attempts total # of attempts		$\frac{1}{2}$		1	# of successful attempts total # of attempts
ii. as a decimal	divide the fraction to convert to percent					use place value to convert to fraction
iii. as a percent	multiply by 100 to convert to percent	→		60%		divide by 100 to convert to decimal

When two or more things have the same probability of happening, they are considered to have **equally** likely outcomes.

Theoretical Probability is the chance of something happening in a perfect world. It can be calculated using the formula:

$$P = \frac{\text{# of favourable outcomes}}{\text{# of possible outcomes}}$$

Example 1

A number from 1 to 50 inclusive is chosen at random. What is the probability that the number . . .

a. is even?	b. ends in a 3?
c. is odd?	d. does not end in a 3?
e. is greater than 13?	f. is prime?
g. is divisible by 5?	h. has 2 digits the same?

Example 2

The Toronto Maple Leafs are playing the Detroit Redwings in the 2003 Stanley Cup Finals. The probability of the Maple Leafs winning are $\frac{4}{11}$.

- a. What is the probability of each team winning a single game? Write your answers as percentages.
- b. If these teams were to play 6 games, how many is each expected to win?

Example 3

Suppose you toss a coin three times.

- a. Which event do you think is more likely: you get 3 heads, or you get 1 head and 2 tails? Explain your thinking.
- b. Draw a tree diagram to show the possible outcomes when a coin is tossed three times. Are the outcomes equally likely?

- c. Use your diagram to determine the probability of each event.
 - i. 3 heads

ii. no heads

iii. 1 head and 2 tails