M	В	F	3	C	1

Exponent Laws

EXPONENT LAWS CAN ONLY BE USED WHEN LIKE BASES EXIST

- 1. Complete each table.
- 2. Examine the relationship between the exponents in the original expression and the exponent in the expression as a single power. State a rule for this relationship.

DEVELOPING THE **MULTIPLICATION LAW**

MULTIPLCATION	EXPAND & SIMPLIFY	EXPRESSION AS A SINGLE POWER
$a^4 \times a^5$	$a \times a \times a$	a 9
$a^2 \times a^4$		
$a^5 \times a$		
$a^6 \times a^2$		
$a^4 \times a^3$		
Rule:		

DEVELOPING THE **DIVISION LAW**

EXPAND & SIMPLIFY	EXPRESSION AS A SINGLE POWER
<u>a×a×a×a×a</u> a×a×a×a	a^{1}
	<u>a×a×a×a×a</u>

Rule:	
Traile.	

DEVELOPING THE **POWER OF A POWER LAW**

DIVISION	EXPAND & SIMPLIFY	EXPRESSION AS A SINGLE POWER
$(a^4)^5$	$a^4 \times a^4 \times a^4 \times a^4 \times a^4$	a^{20}
$(a^5)^2$		
$(a^2)^3$		
$(a^3)^4$		
$(a^6)^2$		

Rule:

Example 1

Use the exponent laws to simplify.

a.
$$(x^3)(x^8)$$

c.
$$(x^2)^4$$

e.
$$x^4(x^6y^3)$$

b.
$$x^9 \div x^3$$

d.
$$(x^3y^2)(xy^5)$$

$$f. \quad 2x^7y^4 \div x^6y$$

When using these laws with more than one variable apply the distributive property.

POWER OF A PRODUCT LAW

$$\left(x^4y^3\right)^2$$

Example 2

Use the exponent laws to simplify.

a.
$$(x^2y^7)^3$$

b.
$$(2x^6y)^4$$

POWER OF A QUOTIENT LAW

$$\left(x^4 \div y^3\right)^2$$

c.
$$\left(\frac{x^4}{y^5}\right)^3$$

$$d. \left(\frac{3y^2}{x^6}\right)^3$$

POWER OF A SUM/DIFFERENCE

$$\left(x^4 - y^3\right)^2$$

e.
$$(x+2y^3)^2$$

Ν	A			~	^	4
IV.	"	ж	_		ı	1

USING THE DIVISION LAW TO UNDERSTAND ZERO AND NEGATIVE EXPONENTS

- 1. Complete the table.
- 2. Examine the relationship between the exponents in the original expression and the exponent in the expression as a single power. State a rule for zero and negative exponents.
- 3. Test the rules to see if they hold true.

DIVISION	EXPAND & SIMPLIFY	EXPRESSION AS A SINGLE POWER	USE EXPONENT LAWS
$a^3 \div a$	<u>a×a×a</u> a	a^2	a^2
$a^3 \div a^2$			
$a^3 \div a^3$			
$a^3 \div a^4$			
$a^3 \div a^5$			
$a^3 \div a^6$			
$a^3 \div a^7$			

ZERO LAW

Rule:		
Test:		
	EXPAND & SIMPLIFY	USE DIVISION LAW
$x^2 \div x^2$		
$2^3 \div 2^3$		
$5^4 \div 5^4$		

NEGATIVE EXPONENT LAW

Rule:

Test.

Test:	_		_	
	EX	PAND & SIMPLIFY	USE DIVISI	ON LAW
$x^2 \div x^5$				
$2^3 \div 2^4$				
$5^4 \div 5^6$				

Example 3

Use the exponent laws to simplify. Write each answer with a positive exponent.

a.
$$x^{-8} \times x^8$$

b.
$$x^{10} \div x^{12}$$

c.
$$(x^9)^0$$

d.
$$x^{-4} \times x^{-2}$$

e. $\frac{2x}{x^3}$

f.
$$\frac{x^0}{4x^{-3}}$$

g.
$$(5x^2y^5)^2 \cdot (5^{-2}x^{-6}y)$$

h.
$$\frac{(9x^2y^5)^2}{3^3x^6y^{14}}$$