Solving Problems with Exponential Relations ## Example 1 To determine the equation of an exponential relationship given a rate of growth or decay as a percentage: | | a. A principal of \$500 is invested at 8% per year, compounded annually. Write an exponential equation to represent the relationship. | b. A new car costs \$20 000. It's value decreases 16% per year after it is purchased. Write an exponential equation to represent the relationship. | |--|---|--| | Start with the generalization for an exponential relation. | | | | 2. Sub in the initial amount, | | | | 3. Sub in the common ratio, * for special words: double use, for half-life use, for triple use, etc * for Percent: convert the percent to a decimal for growth, for decay, | | | ## Example 2 The population of Alberta between 1987 and 2005 can be modelled by an exponential equation. The population in 1987 was 2.4 million and the growth rate was 1.7%. a. Write an equation to model the situation. b. Use your model to calculate the population in 1985. c. Use your model to calculate the population in 2012.