The Cosine Law

Can the following triangle be solved using the sine law? Why?

Use the Pythagorean Theorem to help solve the triangle. (Hint: Don't simplify exponents.)

Find an equation to determine the value of *h* in the left triangle.

$$h^2 + x^2 = 4^2$$
$$h^2 = 4^2 - x^2$$

$$a^2 + b^2 = c^2$$

Find an equation to determine the value of *h* in the right triangle.

$$h^{2} + (5-x)^{2} = 6^{2}$$

$$h^{2} = 6^{2} - (5-x)^{2}$$

Put the equations together since $h^2 = h^2$.

$$4^{2} - x^{2} = 6^{2} - (5 - x)^{2}$$

$$4^{2} - x^{2} = 6^{2} - (5^{2} - 5x - 5x + x^{2})$$

$$4^{2} - x^{2} = 6^{2} - (5^{2} - 10x + x^{2})$$

$$4^{2} - x^{2} = 6^{2} - 5^{2} + 10x - x^{2}$$

$$4^{2} - x^{2} + 5^{2} - 10x + x^{2} = 6^{2}$$

$$4^{2} + 5^{2} - 10(4 \cos B) = 6^{2}$$

$$4 \cos B$$

$$c^2 + a^2 - 2ac\cos B = b^2$$

The cosine law

$$c^2 = a^2 + b^2 - 2ab\cos C$$

can be used to calculate an unknown:

- side when two sides and a contained angle (the angle between two given sides) are given
- angle when three sides are given

When using the cosine law, the unknown angle or side will either be the first or last variable in the formula.

Example 1

Find b.

Example 2

Find A.

Example 3

Two hikers set out in different directions from a marked tree on the Bruce Trail. The angle formed between their paths measures 50° . After 2 hours, one hiker is 6 km from the starting point and the other is 9 km from the starting point. How far apart are the hikers, to the nearest tenth of a kilometre?

A TRAIN FILLED WITH
MATH EXPERTS LEAVES
SACRAMENTO GOING 50 MPH.
42% ON THE TRAIN RECOMMEND TRADITIONAL FORMS
OF TEACHING MATH, WHILE
48% ADVOCATE A MODERN
"INTERACTIVE" APPROACH.