Name: Mr. Hagen

## 7.1 Exponent Rules

Learning Goal: We are learning to work with exponents and their laws.

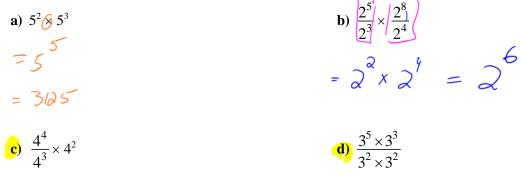
1. Write each expression as a single power, then evaluate.

Write each expression as a single power, then evaluate.  
The law: The Product law states when you multiply  
the same bases you add expandeds.  
a) 
$$3^2 \times 3^2$$
  
 $3 \times 3 \times 3 \times 3$   
 $= 3^{\frac{2}{272}} = 3^{\frac{4}{5}} = 81$   
c)  $(-5)^3 \times (-5)^5$   
d)  $(-1)^2 \times (-1)^3 \times (-1)^5$   
 $= (-5)^{\frac{4}{1}} = 625$   
e)  $(-\frac{1}{4})^2 \times (-\frac{1}{4})^3$   
f)  $(\frac{2}{5}) \times (\frac{2}{5})^2 \times (\frac{2}{5})$   
 $= (-\frac{1}{4})^5$ 

The law: Quotient Law; when dividing same bases, you subtract exponents 2. Write each expression as a single power, then evaluate. **b**  $8^4 \div 8^2$ **a**)  $5^6 \div 5^3$  $=5^{6-3}=5^3=125$ 

c) 
$$2^{10} \div 2^8$$
  
=  $2^2 = 4^7$ 

e) 
$$\frac{(-5)^8}{(-5)^6} \times (-5)^2$$
  
=  $(-5)^8 \times (-5)^2$  (1) Divided  
(2) Multiplied  
=  $(-5)^8 \times (-5)^2$   
=  $(-5)^7 = 625$ 


3. Write each expression as a single power, then evaluate.

The law: Power Law. When an expandent is raised to another expanse, Multiply them **b**)  $(2^4)^2 = \sqrt{\frac{9}{10} + \frac{9}{10}}$ **a**)  $(3^2)^3$ = 2<sup>8</sup> = 256

c) 
$$[(-3)^2]^2$$
 d)  $\left(\frac{1}{3^2}\right)^3 = \frac{1}{3^6}$ 

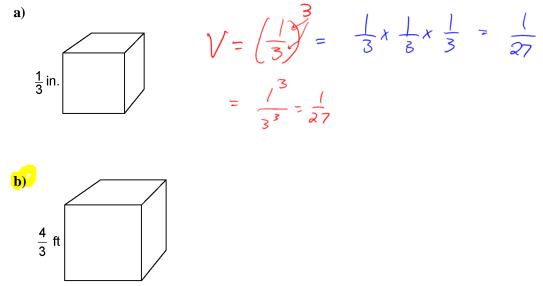
**e)** 
$$[(-1)^5]^6$$
 **f)**  $\left(\frac{1}{4^2}\right)^{2/2} = \frac{1}{4^{4/2}}$ 

4. Show two way of evaluating each expression.



**5.** a) Write  $7^6$  as a product of two powers in two ways.




**b**) Write  $5^3$  as a quotient of two powers in two ways.

$$5^{\boxed{7}} \div 5^{\boxed{9}} = 5^{3}$$

c) Write  $3^{16}$  as a power of a power in two ways.



6. The volume of a cube is given by the formula  $V = s^3$ , where *s* represents the side length of the cube. Calculate the volume of each cube.



- 7. Simplify each expression. Then, use a calculator to evaluate. Round your answers to two decimal places.
- a)  $6^{4.2} \times 6^{3.1}$ =  $6^{7.3} = 479/86.0/$ c)  $(2)^{4.6} \times (2)^{3.1}$ d)  $(4)^{2.3} \times (4)^{1.5}$ =  $2^{7.7}$ = 207.94
- 8. The probability of tossing a coin and getting heads is <sup>1</sup>/<sub>2</sub>. So, the probability of tossing two coins and getting two heads is (<sup>1</sup>/<sub>2</sub>)×(<sup>1</sup>/<sub>2</sub>) or (<sup>1</sup>/<sub>2</sub>)<sup>2</sup>.
  a) Write the probability of tossing two coins and getting two heads as a fraction.

$$\frac{1}{a} \times \frac{1}{a} = \left(\frac{1}{a}\right)^2 = \frac{1}{4}$$

b) What is the probability of tossing four coins and getting four heads?

$$\frac{1}{2}x \frac{1}{2}x \frac{1}{2}x \frac{1}{2} = \left(\frac{1}{2}\right)^{7} = \frac{1}{16}$$

9. Use exponent rules to simplify each expression.



c) 
$$(m^2 n^3)^5$$

d) 
$$\left(\frac{k^{5}h^{4}}{k^{3}h^{2}}\right)^{3}$$
  
=  $\left(k^{3}h^{2}\right)^{3}$   
=  $k^{9}h^{6}$ 

**Success Criteria:** 

• I can simplify exponents by using the Product Law, Quotient Law, and the Power Law.