DAY 6 – Quadratics in Factored Form

1. Determine the zeros of the graph of each equation.

a.
$$y = (x-2)(x-5)$$
 b. $y = (x-7)(x+1)$

b.
$$y = (x-7)(x+1)$$

$$c. \quad y = x(x-10)$$

2. Write each equation in factored form. Then determine the zeros of its graph.

a.
$$y = x^2 - 10x + 9$$

b.
$$y = x^2 - 4$$

c.
$$y = x^2 - 9x$$

3. Write the equation of each quadratic relation in factored form. Expand each to standard form.

a.

Factored Form

Standard Form

- 4. The equation of a quadratic relation in standard form is $y = 4x^2 24x + 36$.
 - a. Use the factored form of the equation to explain why the graph of the relation has only one x-intercept.

b. What is the x-intercept?

How would the graph show this? ______

5.

a. Sketch the graph of $y = x^2 + 4$ for x from -3 to 3.

х	$x^2 + 4$	у
-3		
-2		
-1		
0		
1		
2		
3		

b. Use the graph to explain why $y = x^2 + 4$ cannot be written in factored form