DAY 8 – Comparing Theoretical & Experimental Probabilities

- 1. Determine whether the game Rock, Paper, Scissors is fair when played by two people (players A and B).
 - a. Create a tree diagram to determine all the possible outcomes. Label each possible outcome on the tree diagram as a win for player A, player B or a tie.

- b. How many outcomes are there?
- c. How many chances does player A have to win? What is the probability that player A will win any round?
- d. How many chances does player B have to win? What is the probability that player B will win any round?
- e. Is the game fair? Do both players have an equal probability of winning in any round?
- f. Conduct an experiment to test your findings. Conduct an experiment by playing *Rock, Paper, Scissors*. Complete 15 trials.

	TALLY	FREQUENCY
Player A		
Player A Wins		
Player B		
Player B Wins		
Tie		

- g. Based on the experiment, what is the probability of each player winning?
- h. Combine your data with 3 or 4 other groups. What is the probability of each player winning now?
- i. What do you notice about the relationship between experimental and theoretical probability as the number of trials increases?

- 2. Suppose that your final exam has 10 multiple choice questions, each with possible answers of A, B, C or D. Use a deck of cards to simulate the probability of passing this portion of the exam simply by guessing. Let diamonds represent the correct answer.
 - a. For each trial,
 - draw 10 cards one after the other, replacing each card between drawings
 - record the number of diamonds (out of 10) drawn
 - note whether you passed or failed the trial
 - repeat the trial 19 more times.

·				
Trial	# of Diamonds Drawn	Pass or Fail		
1	/10			
2	/10			
3	/10			
4	/10			
5	/10			
6	/10			
7	/10			
8	/10			
9	/10			
10	/10			

Trial	# of Diamonds Drawn	Pass or Fail
11	/10	
12	/10	
13	/10	
14	/10	
15	/10	
16	/10	
17	/10	
18	/10	
19	/10	
20	/10	

- b. Calculate the experimental probability of passing the c. Given that the theoretical probability that you would test. pass is 7.8%, how close were you to this value?
- d. Explain why your experiment may not have been exact.