Mathematics 11U 6.1 – Periodic and Sinusoidal Functions

This chapter deals with Sinusoidal Functions, which are just a type (a subset) of Periodic Functions. The two sinusoidal functions we will work with are: $f(x) = \sin \theta$ and $f(x) = \cos \theta$

Periodic Function:

Period:

Peak:

Trough:

Equation of Axis:

Amplitude:

1. Which of the following graphs are periodic? Explain why or why not.

2. Determine the range, period, equation of the axis, and amplitude of the function shown.

- **3.** The motion of an automated device for attaching bolts to a household appliance on an assembly line can be modelled by the graph shown at the left.
 - a) What is the period of one complete cycle?
 - b) What is the maximum distance between the device and the appliance?
 - c) What is the range of this function?
 - d) If the device can run for five complete cycles only before it must be turned off, determine the domain of the function.
 - e) Determine the equation of the axis.
 - f) Determine the amplitude.
 - **g**) There are several parts to each complete cycle of the graph. Explain what each part could mean in the context of "attaching the bolt."

6.2 – Sinusoidal Functions What do the graphs of: $f(\theta) = \sin \theta$ and $f(\theta) = \cos \theta$ look like?

Function	$f(x) = 3\sin(2x - 180) + 4$
Proper Function	
Amplitude	
Period	
Phase Shift	
Equation of Axis	
Domain (2 cycles)	
Range	

Function	$f(x) = -2\cos\left(\frac{1}{2}x - 60\right) - 3$
Proper Function	
Amplitude	
Period	
Phase Shift	
Equation of Axis	
Domain (2 cycles)	
Range	

6.6 – Models of Sinusoidal Functions

A reminder of our sinusoidal functions:

The key to creating equations:

 $f(x) = \operatorname{asin}(k(x-d)) + c$

Amplitude = a, found by *peak-EoA*

Period = $\frac{360^{\circ}}{k}$ therefore $k = \frac{360}{Period}$

Phase Shift = d – this is your "starting point" – must be peak, EoA or trough

Equation of Axis = c, found by $\frac{peak+trough}{2}$

	Starting at
+sin	Equation of axis, then heads to peak
-sin	Equation of axis, then heads to trough
+cos	Peak
-cos	Trough

Peak and Trough	
Equation of Axis	
Amplitude	
Period and <i>k</i>	
Phase Shift for sine	
Phase Shift for cosine	
Functions	

Peak and Trough	
Equation of Axis	
Amplitude	
Period and <i>k</i>	
Phase Shift for sine	
Phase Shift for cosine	
Functions	

x	0°	45°	90°	135°	180°	225°	270°
у	9	7	5	7	9	7	5

A sinusoidal function has an amplitude of 4 units, a period of 120° , and a maximum at (0,9). Determine the equation of the function.

A group of students is tracking a friend, John, who is riding a Ferris wheel. They know that John reaches a maximum height of 11m at 10s and then reaches a minimum height of 1m at 55s. How high is John after 2 minutes?