Chapter 7.2 Geometric Sequences Classwork

Name: Solutions by Hayo

1. Determine which sequences are geometric. If it is, state the common ratio:

a) 15, 26, 37, 48, ... b) 3, 9, 81, 6561, ... +11 : 10 Squaring, : no c) -5, 15, -45, 135, ... d) 6000, 3000, 1500, 750, 375, ... x 1/ r. Yes x-3 . yes

2. The 31st term of a geometric sequence is 123 and the 32nd term is 1107. What is the 33rd term?

 $\frac{107}{12} = 9$ $\frac{107 \times 9}{107 \times 9} = 107 \times 9$ 9963

3. For each geometric sequence, determine the general term t_n and t_6 .

a) 4, 20, 100, ...

$$a = 4$$
 $t_n = 4(5)^{n-1}$
 $t_6 = 4(5)^{6-1}$
 $t_6 = 12500$
c) 15, -60, 240, ...

$$a = 15 \qquad E_n = 15(-4)^{n-1} \\ E_{6} = 15(-4)^{6-1} \\ E_{6} = 15(-4)^{6-1}$$

$$t_6 = -15360$$

b) -11, -22, -44,... $a = -11 \qquad t_n = -11 (2)^{n-1}$ $t_n = -11 (2)^{n-1}$ $t_n = -11 (2)^{n-1}$

d) 1, 0.2, 0.04, ...

 $a = 1 \qquad t_n = 1(0.2)^{n-1}$ $F = 0.2 \qquad t_6 = 1(0.2)^{6-1}$

 $t_{c} = -352$

to = 1 or 0.03125

4. The 5th term of a geometric sequence is 45 and the 8th term is 360. Determine the 20th term.

5. A doctor makes observations of a bacterial culture at fixed time intervals. The table below shows his first four observations. If the pattern continues, how many bacteria will be present at the 9th observation?

Observation	Number of Bacteria	$pr = \frac{7680}{5120} = 1.5$	t, z 5120 (1.5)"-1
1	(A) 5120 ·	$D_{1} = \frac{1}{2} = \frac{1}{2}$	t, z jin tis
2	7680	5120	9-1
3	11520		FD(15)
4	17280		tg = 5120 (1.5)
		_	-9
			4-121770
			$t_g = (31, 220)$

6. The Sierpinski gasket is a fractal created from an equilateral triangle. At each stage, the "middle" is cut out of each remaining equilateral triangle. The first three stages are shown: 1 ~ 3 3 ~ s 9

a) How many shaded triangles would be in the 6th stage?

C=3	$t_{1} = 1(3)^{-1}$		3 a 3 a	
a=	6-/	stage 1	stage 2	stage 3
	$t_{k} = 1(5)$	/ 80cm2	60cm2	45072
	tz = 243	×	3 or 0.75	~

b) If the triangle in the first stage has an area of 80 cm², what is the area of the shaded region in the 6th stage?

 $t_{n} = 80 \left(\frac{3}{4}\right)^{n-1}$ $t_{b} = 80 \left(\frac{3}{4}\right)^{b-1}$ (= *¥* a = 80 to = 1215 cm - 18.984375cm2