Chapter 7.5 Arithmetic Series Classwork Name: Solution by Hagen 1. Calculate the sum of the first 10 terms of each arithmetic series. Use $S_n = n\left[2\alpha + (n-1)\alpha\right]$

a)
$$59 + 64 + 69 + ...$$

 $a = 57$
 $d = 5$
 $n = 10$
 $\int_{0}^{z} \frac{10[2(57)] + (10-1)(5)}{2}$
 $\int_{0}^{z} -7$
 $\int_{0}^{z} \frac{10[2(-103)] + (10-1)(-7)]}{2}$
 $n = 10$
 $\int_{0}^{z} \frac{10[2(-103)] + (10-1)(-7)]}{2}$
 $n = 10$
 $\int_{0}^{z} \frac{10[2(-103)] + (10-1)(-7)]}{2}$
 $n = 10$
 $\int_{0}^{z} \frac{10[2(-103)] + (10-1)(-7)]}{2}$
 $\int_{0}^{z} \frac{10[2(-103)] + (10-1)(-7)]}{2}$

2. Calculate the sum of the first 20 terms of an arithmetic sequence with first term 18 and common difference

11.

$$n - 20$$

$$s_{20} = \frac{20 \left[2(18) + (20-1)(11) \right]}{2}$$

$$d = 11$$

$$s_{20} = 10 \left[36 + 209 \right]$$

$$s_{20} = 24500$$
3. For each series, calculate t_{12} then S_{12} .
a) $-18 - 12 - 6 + 0 + ...$

$$c_{2} = -18$$

$$t_{12} = -18 + 66$$

$$t_{12} = -18 + 66$$

$$t_{12} = -18 + 66$$

$$t_{12} = 48$$

$$S_{12} = \frac{12(-18 + 48)}{2}$$

$$S_{12} = \frac{12(-18 + 48)}{2}$$

$$S_{12} = 6(3-0)$$

$$S_{12} = -180$$

$$S_{12} = -12 \left(\frac{-18 + 48}{2} \right)$$

$$S_{13} =$$

4. Determine the sum of the first 20 terms of an arithmetic series in which the 15th term is 107 and terms 1 decrease by 3. 1 1

decrease by 3.

$$N = 20$$
 $[07 = a + (15 - 1)(-3)]$
 $S_{20} = \frac{20(2(149) + (20 - 1)(-3))}{2}$
 $t_{15} = 107$
 $107 = a - 92$
 $S_{20} = 10(298 - 57)$
 $32 = 10(298 - 57)$
 $149 = a$
 $S_{20} = 2410$

We need to know """, so first use the a + (n-1)d

5. Calculate the sums of these finite arithmetic series (example 2 in notes)

a

a)
$$\frac{1}{1+6+11+\dots+56}$$

a) $\frac{1}{1+6+11+\dots+56}$
b) $-31-38-45-\dots-136$
a $z-31$ $-136z -31+(n-1)(-7)$ $S_{16} + \frac{16(-31-136)}{2}$
d $z-7$ $-105z (n-1)(-7)$ $S_{16} + \frac{16(-31-136)}{2}$
d $z-7$ $-105z (n-1)(-7)$ $S_{16} = 8(-167)$
 $S_{16} = 8(-167)$
 $S_{16} = 1336$
 $S_{16} = 1336$

6. Bricks are stacked in 20 rows such that each row has a fixed number of bricks more than the row above it. The top row has 5 bricks and the bottom row has 62 bricks. How many bricks are in the stack? t_1 to

$$S_{20} = \frac{20(5+62)}{2}$$

$$S_{20} = 10(67)$$

$$S_{20} = 670$$

7. Jamal got a job working on an assembly line in a toy factory. On the 20th day of work, he assembled 137 toys. He noticed that since he started, every day he assembled 3 more toys than the day before. How many toys did d=3 Jamal assemble altogether during his first 20 days?

$$a = ? [37 = a + (30 - 1)(3)]$$

$$S_{30} = \frac{20(2/80) + (20 - 1)(3)}{2}$$

$$S_{30} = a + 57$$

$$S_{20} = 10 [(60 + 57)]$$

$$S_{20} = 2170 + 0 x$$

8. Given the arithmetic sequence below, determine the sum of the 20th term to the 39th term.

5+12+19+...
Let's find too and tog usly
$$t_0 = a + (n-1)d$$
. Now, shift the "a" to too
 $a = 5 d = 7$
 $t_{20} = 5 + (2u - 1)(7)$ $t_{39} = 5 + (39 - 1)(7)$
 $t_{30} = 5 + 133$ $t_{39} = 5 + 266$
 $t_{20} = 138$ $t_{39} = 271$.
So $t_{20} = 4070$.