Advanced Functions

Course Notes

Unit 4 – Rational Functions, Equations and Inequalities

We are learning to

- sketch the graphs of simple rational functions
- solve rational equations and inequalities with and without tech
- apply the techniques and concepts to solve problems involving rational models

Unit 4 – Rational Functions, Equations and Inequalities

Contents with suggested problems from the Nelson Textbook (Chapter 5)

4.1 Introduction to Rational Functions and Asymptotes

Pg. 262 #1 - 3

4.2 Graphs of Rational Functions

Pg. 272 #1, 2 (Don't use any tables of values!), 4 - 6, 9, 10

4.4 Solving Rational Equations

Pg. 285 - 287 #2, 5 - 7def, 9, 12, 13

4.5 Solving Rational Inequalities

Pg. 295 - 297 #1, 3, 4 - 6 (def), 9, 11

4.1 Rational Functions, Domain and Asymptotes

Learning Goal: We are learning to identify the asymptotes of rational functions.

Definition 4.1.1

A **Rational Function** is of the form

$$S(x) = \frac{p(x)}{q(x)}$$
, $q(x) \neq 0$ and both $p(x)$ and $q(x)$ are polynomial functions.

e.g.
$$f(x) = \frac{3x^2 - 5x + 1}{2x - 1}$$
 is a rational function.
$$g(x) = \frac{\sqrt{2x + 5}}{2x - 2}$$
 at because $\sqrt{2x + 5}$ is not polynomial.

Domain

Definition 4.1.2

Given a rational function $f(x) = \frac{p(x)}{q(x)}$, then the **natural domain** of f(x) is given by

$$D_{f} = \left\{ \times ER \mid g(x) \neq 0 \right\}$$

$$2eros of g(x)$$

Example 4.1.1

Determine the natural domain of $f(x) = \frac{x^2 - 4}{x - 3}$.

$$D_{S} = \{ \times \in \mathbb{R} \mid X \neq 3 \}$$

$$\times \in (-\infty, 3) \cup (3, \infty)$$

Asymptotes

There are 3 possible types of **asymptotes**:

- 1) Vertical Asymptotes
- 2) Horizontal Asymptotes $y = \frac{1}{x}$
- 3) Oblique Asymptotes

y = mx + b

Vertical Asymptotes

A rational function $f(x) = \frac{p(x)}{q(x)}$ MIGHT have a V.A. when q(x) = 0, but there may be a hole discontinuity instead. A quick bit of algebra will dispense the mystery.

Example 4.1.2

Determine the domain, and V.A., or hole discontinuities for:

a)
$$f(x) = \frac{5x}{x^2 - x - 6}$$

$$f(x) = \frac{5x}{(x-3)(x+2)}$$

$$x=3 \quad x=-2$$

$$V.A. \quad v.4$$

$$X \in (-\infty, -2) \cup (-2, 3) \cup (3, \infty)$$

b)
$$h(x) = \frac{x+3}{x^2-9}$$

$$h(x) = \frac{(x+3)}{(x-3)(x+3)}$$

$$x = 3 \quad V.A.$$

$$x = -3 \quad \text{Hole because it}$$

$$x = -3 \quad \text{Hole because it}$$

$$x = -3 \quad \text{Hole because it}$$

$$h(x) = \frac{1}{x-3}$$

$$x \in (-\infty, -3) \cdot \hat{U}(-3, 3) \cdot \hat{U}(3, \infty)$$

c)
$$g(x) = \frac{x^2 - 4}{x + 2}$$

$$g(x) = \frac{(x+2)(x-2)}{(x+2)}$$

$$x = -2 \text{ Hole}$$

$$g(x) = x - \lambda$$

$$\chi \in (-\infty, -2) \cup (-2, \infty)$$

Horizontal Asymptotes

Here we are concerned with the end behavior of the rational function

i.e. We are asking, given a rational function $f(x) = \frac{p(x)}{q(x)}$, how is f(x) behaving as $x \to \pm \infty$.

Now, since p(x) and q(x) are both polynomials, they have an order (degree). We must consider three possible situations regarding their order:

1) Order of p(x) >Order of q(x)

e.g.
$$f(x) = \frac{x^3 - 2}{x^2 + 1}$$

When the order of p(x) is bigger than the order of q(x), there is 2n0 horizonal asymptotes

2) Order of numerator = Order of denominator then the Hard are the leading coefficients e.g. $f(x) = \frac{2x^2 - 3x + 1}{3x^2 + 4x - 5}$

If x is MASSIVE, the stuff behind the x's are inconsiquential/irrelevat.

What's left is $\frac{2x^2}{3x^2} = \frac{2}{3} = \sqrt{3}$ is the horizontal asymptote.

e.g. Determine the horizontal asymptote of $g(x) = \frac{3x - 4x^5}{5x^5 + 2x - 1}$

H.A: Y= -4/5

3) Order of numerator
$$p(x)$$
 < Order of denominator $q(x)$

e.g.
$$f(x) = \frac{x^2 - 5x + 6}{x^5 + 7}$$
 (100) = 10000 = Really Big = close zero.

Oblique Asymptotes

These occur when the order of
$$\rho(x)$$
 is exactly one bigger than $q(x)$.

e.g. $f(x) = \frac{x^2 - 2x + 3}{x + 1}$

With Oblique Asymptotes we are still dealing with end behaviors.

O.A. have the form y = mx + b (shocking, I know!) The question we have to face is this:

How do we find the line representing the O.A.?

$$f(x) = \frac{x^2 - 2x + 3}{x + 1}$$

(Rough) Sketch of
$$f(x) = \frac{x^2 - 2x + 3}{x + 1}$$

O.A.
$$y = \frac{1}{3} \times -3$$

Example 4.1.3

Determine the equations of all asymptotes, and any hole discontinuities for:

$$a) f(x) = \frac{x+2}{x^2+3x+2} \quad \text{order } 2$$

$$P(x) = \frac{1}{x+1}$$

b)
$$g(x) = \frac{4x^2 - 25}{x^2 - 9}$$

$$g(x) = \frac{(2x-5)(2x+5)}{(x-3)(x+3)}$$

V.A.
$$X = -1$$
Hole $X = -2$
H.A. $Y = 0$
O.A None

$$g(x) = \frac{(2x-5)(2x+5)}{(x-3)(x+3)}$$

$$\frac{V.4. | x=-3, x=3}{\text{Hole}}$$

c)
$$h(x) = \frac{x^2 + 0x + 00 \text{ rds}}{x+3}$$

V.A.
$$x = -3$$
Hole None
H.A. None
O.A. $y = x - 3$

Example 4.1.4

Determine an equation for a function with a vertical asymptote at x = -3, and a horizontal asymptote at y = 0.

Example 4.1.5

Determine an equation for a function with a hole discontinuity at x = 3.

$$\mathcal{L}(x) = \frac{(x-3)}{(x-3)}$$

Success Criteria:

- I can identify a hole when there is a common factor between p(x) and q(x)
- I can identify a vertical asymptote as the zeros of q(x)
- I can identify a horizontal asymptote by studying the degrees of p(x) and q(x)
- I can identify an oblique asymptote when the degree of p(x) is exactly 1 greater than q(x)

4.2 Graphs of Rational Functions

Learning Goal: We are learning to sketch the graphs of rational functions.

Note: In Advanced Functions we will only consider rational functions of the form $f(x) = \frac{ax + b}{cx + d}$

$$f(x) = \frac{ax + b}{cx + d}$$

Rational Functions of the form $f(x) = \frac{ax+b}{cx+dz\rho}$ will have:

1) One Vertical Asymptote
$$C \times td = C$$

$$X = \frac{-d}{C}$$
2) One Zero (unless a=0)
$$L_{X} = \frac{1}{C} = C$$

Ther zero of the numerator
$$a \times tb = 0$$

$$x = \frac{b}{a}$$

3) Functional Intercept

$$f(0) = \frac{g(0) + b}{g(0) + d} = \frac{b}{d} \qquad (0, \frac{b}{d})$$

4) A Horizontal Asymptote because the order are both one

5) These functions will always be either increasing or decreasing Meaning no turning points.

Functional Behaviour Near A Vertical Asymptote

There are **FOUR** possible functional behaviours near a V.A.:

For functions of the form $f(x) = \frac{ax+b}{cx+d}$ we will see behaviours

The questions is, how do we know which?

We need to analyze the function near the V.A.

We need to become familiar with some **Notation.**

Skipping Sout graph it.

Consider some rational function with a sketch of its graph which looks like:

Example 4.2.1

Determine the functional behaviour of $f(x) = \frac{2x+1}{x-3}$ near its V.A.

We now have the tools to sketch some graphs!

Example 4.2.2

Sketch the graph of the given function. State the domain, range, intervals of increase/decrease and where the function is positive and negative.

b) $g(x) = \frac{3x - 2}{2x + 5}$ H.A. $y = \frac{3}{2}$ $\int_{S} : x \in \left(-9, -\frac{5}{2}\right) \cup \left(-\frac{5}{2}, \infty\right)$ V.A. X= = = = = | Rg: 3(x) & (-0, 3) U(3,0) $x-int: \chi = \frac{2}{7}$ (x) is increasing g(x) > 0 when $x \in (-\infty, -5) \cup (\frac{2}{3}, \infty) \times \frac{1}{2}$ g(x) <0 when $x \in \left(-\frac{5}{2}, \frac{2}{3}\right)$

X=1

12

Example 4.2.3

Consider question #9 on page 274:

$$I(t) = \frac{15t + 25}{t}$$

Success Criteria:

- I can identify the horizontal asymptote as $\frac{a}{c}$ I can identify the vertical asymptote as $-\frac{d}{c}$
- I can identify the y-intercept as $\frac{b}{d}$
- I can identify the x-intercept as $-\frac{b}{a}$

Lnow it.

4.4 Solving Rational Equations

Learning Goal: We are learning to solve rational equations. Think rationally!

Solving a Rational Equation is **VERY MUCH** like solving a Polynomial Equation. Thus, this stuff is so much fun it should be illegal. But it isn't illegal unless you break a rule of algebra. Math Safe!

KEY (this is a major key for you music buffs)

e.g.

Multiplying by the Multiplicative Inverse of the Common Denominator is wonderful to use WHEN YOU HAVE something like:

 $RATIONAL_1 + RATIONAL_2 = RATIONAL_3$

$$\frac{3}{x-2} + \frac{3}{2} = \frac{4(x+5)}{X}$$

$$(x+5) = \frac{2(x+2)(x)}{X}$$

$$6x + 3x(x-2) = 6(x-2)(x+5)$$

$$Expand, "stuff = 0", then solve.$$

Make Sure To Keep RESTRICTIONS ON X In Mind

This means that restrictions cannot be solutions.

Example 4.4.1

a) Solve
$$\frac{x}{5} > \frac{9}{18}$$

b) Solve
$$\sqrt{\frac{1}{x} - \frac{5x}{3}} = \frac{2}{5}$$

$$X \neq 0$$
 (D)
$$|SX \circ S(S)(3)(x)|$$

$$0 = 25x^2 + 6x - 15$$
 D.N.F.

$$X = -0.9$$
 and $X = 0.66$

c) Solve
$$\sqrt{\frac{3}{x} + \frac{4}{x+1}} = 2$$

$$3(x+1) + 4x = 2x(x+1)$$

 $3(x+1) + 4x = 2x(x+1)$
 $3(x+1) + 4x = 2x + 2x - 3$

$$0 = 2x^{2} - 5x - 3$$

$$0 = 2x^{2} + 1x - 6x - 3$$

$$x - 3$$

$$0 = (x - 3)(2x + 1)$$

$$x = \frac{3}{3}$$

$$0 = (x-3)(3x+1)$$

$$x \neq 0$$
 | CD.
 $x \neq -1$ | $(x)(x \uparrow 1)$

$$x = 3$$

$$x = -\frac{1}{2}$$

d) Solve
$$\left(\frac{10}{x^2 - 2x} + \frac{4}{x} = \frac{5}{x - 2}\right)^{(\times)(x - 2)}$$

$$10 + 4(x-2) = 5x$$

 $10 + 4x - 8 = 5x$

RESTRICTIONS

$$x\neq0$$
 | c0.
 $x\neq2$ | $\times(x-2)$

e) Solve
$$16x - \frac{5}{x+2} = \frac{15}{x-2} - \frac{60}{(x-2)(x+2)}$$

$$6x(x-2)(x+2) - 5(x-2) = 15(x+2) - 60$$

$$6x(x-2)(x+2) - 60$$

Restrictions:
$$x \neq -2$$
, 2
(D: $(x-2)(x+2)$

$$16x(x-2)(x+2) - 5(x-2) = 15(x+2) - 60$$

$$16x^{3} - 64x - 5x + 10 = 15x + 30 - 60$$

$$\frac{|6x^{3} - 84x + 40 = 0}{4x^{3} - 2|x + 10 = 0}$$

$$T_{ry} f(2) = 4(2)^3 - 21(2) + 10$$

= 32 - 42 + 10
= 0! : (x-2) is a factor.

$$(x-2)(4x^{2}+8x-5) = 0$$

$$(x-2)(4x^{2}+8x-5) = 0$$

$$(x-2)(4x^{2}-2x+10x-5)$$

$$(x-2)(2x+5)(2x-1) = 0$$

$$x = -\frac{5}{2}$$

$$x = \frac{1}{2}$$

-2,16

Example 4.4.2

From your Text: Pg. 285 #10

The Turtledove Chocolate factory has two chocolate machines. Machine A takes m minutes to fill a case with chocolates, and machine B takes m + 10 minutes to fill a case. Working together, the two machines take 15 min to fill a case. Approximately how long does each machine take to fill a case?

Work or fate problem

A:
$$\frac{1}{m}$$
 B: $\frac{1}{m+10}$ Togetha: $\frac{1}{15}$

$$\frac{1}{m} + \frac{1}{m+10} = \frac{1}{15}$$

$$\frac{1}{m} + \frac{1}{m+10} = \frac{1}{m+10}$$

$$\frac{1}{m} + \frac{1}{m+10}$$

Success Criteria:

- I can recognize that the zeros of a rational function are the zeros of the numerator
- I can solve rational equations by multiplying each term by the lowest common denominator, then solving the resulting polynomial equation
- I can identify inadmissible solutions based on the context of the problem

4.5 Solving Rational Inequalities

Learning Goal: We are learning to solve rational inequalities using algebraic and graphical approaches.

The joy, wonder and peace these bring is really quite amazing

e.g. Solve
$$\left(\frac{x-2}{7} \ge 0\right)^{7}$$

 $x-2 \ge 0$
 $x \ge 2$

Example 4.5.1

Solve
$$\frac{x-2}{x+3} \ge 0$$

Note: For Rational Inequalities, with a variable in the denominator, you **CANNOT** multiply by the multiplicative inverse of the common denominator!!!!

We solve by using an Interval Chart

For the intervals, we split $(-\infty, \infty)$ at all zeros (where the numerator is zero), and all restrictions (where the denominator is zero) of the (SINGLE) rational expression. Keep in mind that it may take a good deal of algebraic manipulation to get a SINGLE rational expression...

Zeros at
$$x=2$$
, (estriction at $1 \times 7-3$

Example 4.5.2 Solve
$$\frac{1}{x+5} < 5$$

$$\frac{1}{2} = \frac{5}{2} = \frac{5}$$

$$\frac{1-5(x+5)}{x+5}$$
 $\angle 0$

- Get everything on one side *∨*
- Simplify into a single Rational 7 had part Expression using a common denominator
- Interval Chart it up

$$\frac{1-5\chi-25}{\chi+5} \geq 0$$

$$\frac{-5 \times - 24}{\times + 5} < 0$$

Zero at	$x = -\frac{24}{5} = -\frac{24}{5}$
> sestret	n at x t

Interval	$\left(-\infty, -5\right)$	(-5, -4.8)	(-4.8,00)
T.V.	-6	- 4.9	W O
-5x-24	+	+	
X+5		+	+
Ratio		+.	

$$\frac{1}{x+5}$$
 25 when $x \in (-\infty, -5) \cup (-4.8, \infty)$

Example 4.5.3

Solve
$$\frac{x^2 + 3x + 2}{x^2 - 16} \ge 0$$

FACTORED FORM IS YOUR FRIEND

$$\frac{(x+1)(x+2)}{(x-4)(x+4)} \ge 0$$

Zeros at
$$x = -1, -2$$

(estructions $x \neq -9, 9$

Intervals	(-0, -4)	$\left(\left(-4,-2\right) \right)$	(-2, -1)	(-1, 4)	(4, 00)
TeV.	-5	-3	-1.5	0	5
×+l	_			+	+
X+Z			+	+	
x-4	_		_	_	+
*+4	_	. —	+	+	+
Ratio			+		·

$$\frac{x^{2}+3x+2}{x^{2}-16} \geq 0 \text{ when } x \in (-0, 4) \cup [-2, -1] \cup (4, \infty)$$

Example 4.5.4

Solve
$$\frac{3}{x+2} \le x$$

$$\frac{3x+5}{x+6} \ge \frac{4x-8}{x+6}$$

The fight side $\frac{3}{x+2} \le x$

$$3x + 5 \ge 4x - 8$$
 $-3x + 8 = -3x + 8$
 $13 \ge x$

$$0 \leq \frac{\left(\frac{(x+2)}{x+2}\right)}{\left(\frac{(x+2)}{x+2}\right)}$$

$$0 \leq \frac{\chi^2 + \lambda x - 3}{\chi + \lambda}$$

$$0 \leq \frac{(x+3)(x-1)}{x+2}$$

Zeros:
$$x = -3, 1$$

Restriction: $x \neq -2$

Intervals	$(-\omega, 3)$	(-3, -2)	(-2, 1)	((, ∞)
T.U.	-4	~2.5	0	2
χ +3	~	+	+	+
×-1		_	_	+
X+2			-+-	+
Ratio		+)		

$$\frac{3}{100} \leq \times \text{ when } \times \in [-3, -2) \cup [1, \infty)$$

Example 4.5.5

From your Text: Pg. 296 #6a Using **Graphing Tech**

Solve
$$\frac{x+3}{x-4} \ge \frac{x-1}{x+6}$$

Note: There are **TWO** methods, both of which require a **FUNCTION** (let f(x) = ... returns)

1) Get a Single Function (on one side of the inequality)

2) Use Two Functions (one for each side)

Success Criteria:

- I can recognize that an inequality has many possible intervals of solutions
- I can solve an inequality algebraically, using an interval chart
- I can solve an inequality graphically