Advanced Functions

Course Notes

Unit 4 – Rational Functions, Equations and Inequalities

We are learning to

- sketch the graphs of simple rational functions
- solve rational equations and inequalities with and without tech
- apply the techniques and concepts to solve problems involving rational models

Unit 4 – Rational Functions, Equations and Inequalities

Contents with suggested problems from the Nelson Textbook (Chapter 5)

4.1 Introduction to Rational Functions and Asymptotes

Pg. 262 #1 - 3

4.2 Graphs of Rational Functions

Pg. 272 #1, 2 (Don't use any tables of values!), 4 – 6, 9, 10

4.4 Solving Rational Equations

Pg. 285 - 287 #2, 5 - 7def, 9, 12, 13

4.5 Solving Rational Inequalities

Pg. 295 - 297 #1, 3, 4 - 6 (def), 9, 11

4.1 Rational Functions, Domain and Asymptotes

Learning Goal: We are learning to identify the asymptotes of rational functions.

Definition 4.1.1

A Rational Function is of the form

= (x) =	$\frac{P(x)}{q(x)}$)	q(x)≠0
---------	---------------------	---	--------

and both p(x) and g(x) are polynomials.

e.g.
$$f(x) = \frac{3x^2 - 5x + 1}{2x - 1}$$
 is a rational for

$$g(x) = \frac{\sqrt{2x + 5}}{3x - 2}$$
 not a rational for because $\sqrt{2x + 5}$ is not
a polynomial

Domain

Definition 4.1.2

Example 4.1.1

Determine the natural domain of $f(x) = \frac{x^2 - 4}{x - 3}$.

Asymptotes

There are 3 possible types of **asymptotes**:

A rational function $f(x) = \frac{p(x)}{q(x)}$ MIGHT have a V.A. when q(x) = 0, but there may be a hole discontinuity instead. A quick bit of algebra will dispense the mystery.

Example 4.1.2

Determine the domain, and V.A., or hole discontinuities for:

a)
$$f(x) = \frac{5x}{x^2 - x - 6}$$

$$f(x) = \frac{5x}{(x - 3)(x + 2)}$$
Since these factors stay,

$$x = 3 \quad x = -2$$

$$f(x) = \frac{5x}{(x - 3)(x + 2)}$$

b)
$$h(x) = \frac{x+3}{x^2-9}$$

 $h(x) = \frac{x+3}{(x-3)(x+3)}$
 $h(x) = \frac{1}{x-3}$

X = 3 is a V.A. X = -3,3 a hole because it disappeared.

 $X \in (-\infty, -3)\cup(-3, 3)\cup(3, \infty)$

 $X \in (-\infty, -2) \cup (-2, \infty)$

Horizontal Asymptotes

Here we are concerned with the end behaviors of the rational fr.

i.e. We are asking, given a rational function $f(x) = \frac{p(x)}{q(x)}$, how is f(x) behaving as $x \to \pm \infty$.

Now, since p(x) and q(x) are both polynomials, they have an order (degree). We must consider three possible situations regarding their order:

1) Order of p(x) >Order of q(x)e.g. $f(x) = \frac{x^3 - 2}{x^2 + 1}$

2) Order of numerator = Order of denominator

e.g.
$$f(x) = \frac{2x^2 - 3x + 1}{3x^2 + 4x - 5}$$

When the orders are the same, the H.A. is the
leading coefficients.
$$ext H.A.$$
 is $y = \frac{2}{3}$

e.g. Determine the horizontal asymptote of $g(x) = \frac{3x - 4x^5}{5x^5 + 2x - 1}$

H.A. is
$$Y = \frac{-4}{5}$$

f(x) = 1/20

6

3) Order of numerator p(x) < Order of denominator q(x)

e.g.
$$f(x) = \frac{x^2 - 5x + 6}{x^5 + 7}$$

If $p(x)$ is smaller than $g(x)$, then
the H.A. is $y = 0$

Oblique Asymptotes
These occur when the order of
$$P(x)$$
 is exactly one more than the
order of $g(x)$.
e.g. $f(x) = \frac{x^2 - 2x + 3}{x + 1}$

With Oblique Asymptotes we are still dealing with Cnd behaviors.

O.A. have the form y = mx + b (shocking, I know!) The question we have to face is this:

How do we find the line representing the O.A.?

Ans: By Polynomial Division.
The O.A. is the quotient.

$$f(x) = \frac{\chi^2 - 2\chi + 3}{\chi + 1}$$

$$-1 \quad 1 \quad -2 \quad 3$$

$$1 \quad -1 \quad 3$$

$$1 \quad -3 \quad 16 \text{ remainder.}$$

$$Y = 1\chi - 3 \quad 15 \quad \text{the line of the O.A.}$$

Example 4.1.3

Determine the equations of all asymptotes, and any hole discontinuities for:

b) $g(x) =$	x^2-9	
q(x) = (a	(x+5)(2x-5)	-
((x-3)(x+3)	

V.A.	X=-
Hule	$X = -\lambda$
H.A.	Y = O
0. A.	M.A.

Example 4.1.4

Determine an equation for a function with a vertical asymptote at x = -3, and a horizontal asymptote at y = 0. So then by y = 0.

$$f(x) = \frac{1}{X+3} \text{ or } \frac{3x^2 - 8x+50}{(x+3)(x-5)(x-100)}$$

Example 4.1.5

Determine an equation for a function with a hole discontinuity at x = 3.

Success Criteria:

- I can identify a hole when there is a common factor between p(x) and q(x)
- I can identify a vertical asymptote as the zeros of q(x)
- I can identify a horizontal asymptote by studying the degrees of p(x) and q(x)
- I can identify an oblique asymptote when the degree of p(x) is exactly 1 greater than q(x)

4.2 Graphs of Rational Functions

Learning Goal: We are learning to sketch the graphs of rational functions.

Note: In Advanced Functions we will only
consider rational functions of the form

$$f(x) = \frac{ax+b}{cx+d}$$
Rational Functions of the form $f(x) = \frac{ax+b}{cx+d}$ will have:
1) One Vertical Asymptote

$$C \times + d = 0$$

$$X = -\frac{d}{C} \quad y \text{ unless } C = 0.$$
2) One Zero (unless $a = 0$)

$$x = -\frac{d}{C} \quad y \text{ unless } C = 0.$$
3) Functional Intercept $x = 0$

Functional Intercept
$$\frac{a(0) + b}{c(0) + d} = \frac{b}{d} \Longrightarrow \begin{pmatrix} 0 & \frac{b}{d} \\ 0 & \frac{b}{d} \end{pmatrix}$$

4) A Horizontal Asymptote Since orders are equals

$$\gamma = \frac{\alpha}{C}$$
, unless $\alpha = 0$, then the H.A. $\gamma = 0$

Functional Behaviour Near A Vertical Asymptote

There are **FOUR** possible functional behaviours near a V.A.:

We need to **analyze** the function **near the V.A**.

We need to become familiar with some Notation.

Consider some rational function with a sketch of its graph which looks like:

Example 4.2.1

Determine the functional behaviour of $f(x) = \frac{2x+1}{x-3}$ near its V.A. U.A. is X = 3 $x \rightarrow 3$ $f(x) \rightarrow -\infty$ Pick on x which is less than 3 but really close to 3. x = 2.9, f(2.9) = -68 x = 2.99, f(2.97) = -698 x = 2.999, f(2.999) = -6988 x = 2.999, f(2.999) = -69984x = 2.999, f(2.999) = -69984 We now have the tools to sketch some graphs!

Example 4.2.2

Sketch the graph of the given function. State the domain, range, intervals of increase/decrease and where the function is positive and negative.

a)
$$f(x) = \frac{2x+1}{x-1}$$

$$V.A: x = 1$$

$$HA: y = \frac{2}{3} = 2$$

$$x = nt: x = -\frac{1}{2}$$

$$\int f(x) > 0 \quad (-\infty, -\frac{1}{3}) \cup (1, \infty)$$

$$f(x) = 0 \quad (-\infty, -\frac{1}{3}) \cup (1, \infty)$$

b)
$$g(x) = \frac{3x-2}{2x+5}$$

V.A: $x = -\frac{5}{2}$
H.A: $y = \frac{3}{2}$
 $y = \frac{3}{2}$

Example 4.2.3

Consider question #9 on page 274:

Success Criteria:

- •
- I can identify the horizontal asymptote as $\frac{a}{c}$ I can identify the vertical asymptote as $-\frac{d}{c}$ •
- I can identify the y-intercept as $\frac{b}{d}$ •
- I can identify the x-intercept as $-\frac{b}{a}$ •

4.4 Solving Rational Equations

Learning Goal: We are learning to solve rational equations. Think rationally!

Solving a Rational Equation is **VERY MUCH** like solving a Polynomial Equation. Thus, this stuff is so much fun it should be illegal. But it isn't illegal unless you break a rule of algebra. Math Safe!

Make Sure To Keep **RESTRICTIONS ON X** In Mind

this means that restrictions cannot be solutions.

Example 4.4.1 Contractively (if you remarked)
a) Solve
$$\frac{x}{5} \times \frac{9}{18}$$

 $IB_{X} = 45$
 $X = \frac{95}{75}$
 $X = \frac{5}{75}$
b) Solve $\left(\frac{1}{x} - \frac{5x}{3} = \frac{2}{5}\right)^{(5)(3)(x)}$
 $I5 - 25x^{2} = 6x$
 $O = 25x^{2} + 6x - 15$
 UE
 $UE Outsher Formula
 $X = -\frac{5}{2}$
 $X = -\frac{5}{2}$$

c) Solve
$$\left(\frac{3}{x} + \frac{4}{x+1} = \frac{2}{7}\right)^{(x)(x+1)}$$

RESTRICTIONS
 $X \neq O = \left(\begin{array}{c} C.O. \\ X \neq -1 \end{array}\right)^{(x)(x+1)}$
 $\overrightarrow{S}_{X + 3 + \frac{4}{2}} = 2x^{2} + 2x^{-7X} - 3$
 $O = 2x^{2} - 5x - 3$
 $O = 2x^{2} - 6x + \frac{1}{2x} - 3$
 $O = (2x + 1)(x - 3)$
d) Solve $\left(\begin{array}{c} \frac{10}{x^{2} - 2x} + \frac{4}{x} = \frac{5}{x-2} \\ x(x-2) \end{array}\right)^{(x)(x-2)}$
 $A = \frac{5}{2x}$
 A

Example 4.4.2

From your Text: Pg. 285 #10

The Turtledove Chocolate factory has two chocolate machines. Machine A takes *m* minutes to fill a case with chocolates, and machine B takes m + 10 minutes to fill a case. Working together, the two machines take 15 min to fill a case. Approximately how long does each machine take to fill a case?

Work or a rate problem

$$\frac{a j b}{fine} = \frac{fillion}{minutes}$$

$$A: \frac{1}{M} \quad B: \frac{1}{m+10} \quad Together: \frac{1}{15}$$

$$\left(\frac{1}{M} + \frac{1}{m+10} = \frac{1}{15}\right)^{15(m)(m+10)} \underset{M \neq 0}{\text{Restructure}} \quad C.D. \\ (15(m)(m+10)) \quad M \neq 0 \quad (15(m)(m+10)) \\ 15(m+10) + 15m = m(m+10) \\ 15m + 150 + 15m = m^2 + 10m^2 - 150 \\ 0 = m^2 - 20m - 150 \quad D.N.F. \\ \therefore by the Q.F. \\ Medure A taken 25.8 min \\ M = 25.8 \quad Medure B taken 35.8 min \\ Medure B taken 35.8 \\ Medure B taken 35.8$$

Success Criteria:

- I can recognize that the zeros of a rational function are the zeros of the numerator
- I can solve rational equations by multiplying each term by the lowest common denominator, then solving the resulting polynomial equation
- I can identify inadmissible solutions based on the context of the problem

4.5 Solving Rational Inequalities

Learning Goal: We are learning to solve rational inequalities using algebraic and graphical approaches.

The joy, wonder and peace these bring is really quite amazing

Example 4.5.1

Solve
$$\frac{x-2}{x+3} \ge 0$$

Zero: x=2, V.A. at x=-3

We solve by using an Interval Chart

Note: For Rational Inequalities, with a variable in the denominator, you CANNOT multiply by the multiplicative inverse of the common denominator!!!! Why? If the factor, X+3, it Negatives the inequality would need to Flip. Since we do not know the sign of 'X+3", we cannot multiply by it.

For the intervals, we split $(-\infty,\infty)$ at all zeros (where the numerator is zero), and all restrictions (where the denominator is zero) of the (SINGLE) rational expression. Keep in mind that it may take a good deal of algebraic manipulation to get a SINGLE rational expression...

Example 4.5.2 Solve $\frac{1}{r+5} < 5$

DO NOT CROSS MULTIPLY (or else)

- Get everything on one side
- Simplify into a single Rational Expression using a common • denominator

Interval Chart it up

 $\frac{1}{x+5}$ z = 5 for $x \in (-\infty, -5) \cup (-4.8, \infty)$ 20 Example 4.5.3

Solve
$$\frac{x^{2}+3x+2}{x^{2}-16} \ge 0$$
$$\frac{(\chi \neq l)(\chi \neq Q)}{(\chi = -4)(\chi \neq 4)} \ge 0$$

FACTORED FORM IS YOUR FRIEND

Zeros: x = -2, -1

restrictions: X = -9, 4

 $\frac{\chi^{2}+3\chi+2}{\chi^{2}-16} \ge 0 \quad \text{for } \chi \in (-\infty, -4) \cup [-2, -1] \cup (4, \infty)$

3x+5 ≥ 1/x-8

Example 4.5.4 Solve $\frac{3}{x+2} \le x$ This is bigger, so move that things over to that side.

Zeros: $\chi = -3, 1$ restriction: $\chi \neq -2$

 $\therefore \frac{3}{X+2} \le X \quad \text{for } X \in \left[-3, -2\right] \cup \left[1, \infty\right)$

Example 4.5.5

From your Text: Pg. 296 #6a Using **Graphing Tech**

Solve
$$\frac{x+3}{x-4} \ge \frac{x-1}{x+6}$$

Note: There are **TWO** methods, both of which require a **FUNCTION** (let $f(x) = \dots$ returns)

Success Criteria:

- I can recognize that an inequality has many possible intervals of solutions
- I can solve an inequality algebraically, using an interval chart
- I can solve an inequality graphically