Advanced Functions # Course Notes # Chapter 1 – Functions Learning Goals: We are learning to... - identify the characteristics of functions and how to represent them - apply transformations to parent functions and how to use transformations for sketching - to determine the inverse of a function (OSO = hyp # **Chapter 1 – Introduction to Functions** Contents with suggested problems from the Nelson Textbook. These problems are not going to be checked, but you can ask me any questions about them that you like. ## **1.1 Functions** – *Pg 1 - 3* Read Example 3 on Page 9 - Pg. 11 - 13 #1 - 3, 5, 6, 7b-f, 9, 10, 12 ### 1.2 Properties of Functions -Pg 4 - 12 Pg. 23 – 24 #5, 7 – 11 (1.3 in Nelson Text) ### 1.3 Transformations of Functions Review – Pg 13 - 15 Worksheet and graphs ### 1.4 Inverses of Functions – Pg 16 - 20 Pg. 43 – 45 #2 – 4, 7, 9, 12, 13, 15 (1.5 in Nelson) # 1.5 Piecewise Defined Functions – Pg 21 - 25 (Abs. Value.) Pg. 16 # 2, 4 - 8 (think about transformations!), 10 (1.2) (Piecewise) Pg. 51 - 53 # 1 - 5, 7 - 9 (1.6) # 1.1 Functions Learning Goal: We are learning to represent and describe functions and their characteristics. There are some people who argue that mathematics has just two basic building blocks: Numbers and Operations. This course is concerned with functions which can be considered number generators. A function takes a given number, and using mathematical operations generates another number. We will be examining the **relationship** between the given numbers, and the generated numbers for various functions. $$\int (x) = \sqrt{x - 1}$$ **Definition 1.1.2** Domain of a Function: a set of "x-values" which makes sense when plugged into a function Range of a Function **Function Notation** We use the notation f(x) to "name" a function. This notation is powerful because it contains both the domain and the range. For example we might write f(2), which shows that the domain value is x = 2, and that the range value (which we must calculate) is denoted f(2) = 8 $$f(x) = \rangle$$ **Definition 1.1.3** The Graph of a function is a set of points, (x, f(x)) denoted $f(x) = \{(x, f(x)) \mid x \in D\}$ as **Example 1.1.1** Given the graph of the function $f(x) = \{(3,4), (2,-1), (7,8), (4,2), (5,4)\}$ determine: a) $$D_f = \{3, 3, 7, 4, 5\}$$ b) $$R_f = \{ 4, -1, 8, 2 \}$$ c) Is $$f(x)$$ a function? Yes, each X is anywer. **Example 1.1.2** Consider the sketch of the graph of g(x), and determine: a) $$D_g = \{ x \in \mathbb{R} \mid -4 \le x \le 5 \}$$ b) $$R_s = \{ \gamma \in \mathbb{R} \mid -2 \le \gamma \le 3 \}$$ c) Is $g(x)$ a function? Note: In the above examples we have seen functions (and nonfunctions which we call relations) depicted graphically and numerically. We now turn to algebraic representations of functions. It is much more difficult to determine domain and range for functions given in an algebraic form, but the algebraic form is incredibly useful! # **Example 1.1.3** use desmos State the domain and range of the functions given in algebraic form. $$a) f(x) = 3\cos(2x)$$ b) $$g(t) = (t-2)^2 + 1$$ $$(c) h(x) = \frac{2}{x-1}$$ $$D_{3} = \{ \times \in \mathbb{R} \}$$ $$R_{3} = \{ g(x) \in \mathbb{R} \mid g(x) \ge 1 \}$$) => means does not include endpoint # Notations for Domain and Range Assumes all real numbers. **Interval Notation** D: XE/-4,5 **Set Notation** uses { { Pseudo-set Notation #### **Success Criteria** - I can use function notation to represent the values of a function - I can apply the vertical line test - I can identify the domain and range for different types of functions - I can recognize and apply restrictions on the domains of functions 4 # **1.2 Properties of Functions** **Learning Goal:** We are learning to compare and contrast the properties and characteristics of various types of functions. Recall that we define the graph of a function to be the SET of Ordered Pairs: graph: $$\{(x, f(x)) \mid x \in D_f\}$$ We can visualize the graph of a function by plotting its ordered pairs on the Cartesian axes. #### **Example 1.2.1** e.g. $$f(x) = x^2$$ has the graph $\left\{ \left(X, \chi^2 \right) \middle| \chi \in \mathbb{R} \right\}$ and looks like # Characteristics of a Function's Graph Over the course we will be studying Polynomial, Rational, Trigonometric, Exponential and Logarithmic Functions. For now we are focussed on Polynomial and Rational Functions, but for each type of function we will try and understand various functional (fnal) behaviours (or characteristics). The characteristics (behaviours) we are primarily interested in studying are: - 1. Domain and Ronge - 2. Axis Intercepts (X and y intercepts) - 3. Intervals of Increase / Decrease "chanks" of the Somain - 4. Continuity Us. discontinuity - 5. Function End Behavior. Note: Generally a geometric point of view will just mean that we'll look at pictures, but Geometry is actually **much** deeper than that! # Intervals of Increase and Decrease use interval notion We will examine (when possible) functional behaviour from both algebraic and geometric points of view. #### **Definition 1.2.1** A function f(x) is said to be increasing on the open interval (a,b) when A function f(x) is said to be decreasing on the open interval (a,b) when hen $$\frac{a}{b}$$ 6 Note the difference between open and closed intevals: An open interval does not include endpoints (a, b) A closed interval includes the endpoints ### **Example 1.2.2** Consider the function f(x), represented graphically: Determine where f(x) is increasing and decreasing. Increasing on: $(-\infty,0)$ $(2,\infty)$ Decreasing on: (0,2) **Figure 1.2.2** # Continuity For the time being we will consider a (quite) rough definition of what it means for a function to be continuous. In fact, we will see that understanding what it means for a function to be discontinuous may be more helpful for now. In the course Calculus and Vectors, a formal, algebraic definition of continuity will be considered. **Rough Definition** do not lift your per or percil. A function f(x) is **continuous** (cts) on its domain D_f if when sketching, you **Pictures** There are 3 types of **dis**continuities: 1) Jump at X=5 2) $$f(x) = \frac{x^2 - 16}{x - 4}$$ $$f(x) = \frac{(x+4)(x-4)}{x-4}$$ 3) # **End Behaviour of Functions** Here we are concerned with how the function is behaving as x gets As x gets + U G = (which we write $x \to \infty$, or $x \to -\infty$) the functional values (for whatever function we are studying) can do one of three things: e.g. as $$|x \to \pm \infty, f(x) \to \infty$$ $-\infty$ #### **Success Criteria** - I can identify types of functions based on their graphical characteristics - I can use different characteristics (intervals of increase/decrease, end behaviour, continuity) to help me identify types of functions # 1.3 Transformations of Functions **Learning Goal:** We are learning to apply transformations to parent functions and how to use transformations for sketching This section is pure review of material from Grade 11. If you've forgotten certain aspects of the concepts, ask for help. Recall that there are three basic transformations of functions. You've probably heard of Flips Stretches and Shifts. More formal mathematical terms would be Reflections, Dilations and Translations, respectively. Recall also that transformations can occur both vertically and horizontally. **Definition 1.3.1** Given a function f(x), then we denote transformations to f(x) as $f(x) = x^{2}$ f(x) = sin(x) F(x) = a | K(x-d) | + C(x+5) = (x-(-5)) $f(x) = \sqrt{x}$ f(x) = |x| $F(x) = a \int (x(x-d)) + C$ $F(x) = a \int (x(x-d)) + C$ a = Vertical Stretch If a <0, then there is also a flip along the x-axis (upside down) -> multiply the 'a" with the y-volues K = horizontal stretch If KZO, then there is also a flip along the y-axis (goes backwards) -> multiply by twith the x-values Success Criteria: • I can use the value d=horizontal shift **Success Criteria:** - I can use the value of a to determine if there is a vertical stretch/reflection in the x-axis - I can use the value of k to determine if there is a horizontal stretch/reflection in the y-axis - I can use the value of d to determine if there is a horizontal translation - I can use the value of c to determine if there is a vertical translation # 1.4 Inverses of Functions **Learning Goal:** We are learning to determine the equation of an inverse relation and the conditions for an inverse relation to be a function. The inestimable William Groot has a saying: # An Inverse Relation is an UNDO #### **Definition 1.4.1** A **relation** is simply an algebraic relationship between domain values and range values. Note: All functions are relations, but not all relations are functions e.g. $x^2 + y^2 = 25$ is a relation, but it is not a function (it's a circle and so doesn't pass the VLT) Consider the Arrow Diagram: #### **Example 1.4.1** Given the graph of f(x) determine: D_f , R_f , $f^{-1}(x)$, $D_{f^{-1}}$, $R_{f^{-1}}$ $$f(x) = \{(2,3), (4,2), (5,6), (6,2)\}$$ $$f'(x) = \{(3,2), (2,4), (6,5), (2,6)\}$$ # Determining the Inverse of a Function We can determine the inverse of some given function in either of two ways: Graphically and Algebraically. # **Function Inverses Graphically** $$f(x) = x^2$$ Note: Finding a function inverse graphically is not a very useful method, but it can be instructive. Is there a way to force f(x) to be a function? Ves Restricting the Domain of f(x). -do the inverse on only part of the formain. - restrict up to and including the turning point. For $f(x)=x^2$, use either $(-\infty,0]$ or $[0,\infty)$ # **Function Inverses Algebraically** Determining algebraic representations of inverse relations for given functions can be done in (at least) two ways: - 1) Use algebra in a "brute force" manner (keeping in mind the Big Concept) - 2) Use Transformations (keeping in mind "inverse operations") Hayer's Method ### **Example 1.4.2** Determine the inverse of $f(x) = 2\sqrt{\frac{1}{3}(x-1)} + 2$. domain and range of both the function and its inverse. Here we will use "brute force". - State the Method: 1) Switch x and f(x), and $$X = 2\sqrt{\frac{1}{3}(y-1)} + 2$$ $$X - 2 = 2\sqrt{\frac{1}{3}(y-1)}$$ $$\frac{x-2}{2} = \sqrt{\frac{1}{3}(y-1)}$$ $$\frac{x-2}{2} = \sqrt{\frac{1}{3}(y-1)}$$ $$3(\frac{x-2}{2}) + 1 = y$$ $$(x-2)^{\frac{1}{3}(y-1)}$$ $$3(\frac{x-2}{2})^{\frac{1}{3}(y-1)}$$ $$3(\frac{x-2}{2})^{\frac{1}{3}(y-1)}$$ $$\int_{0}^{1} (x) = 3(\frac{x-2}{2})^{2} + 1$$ Using transformations determine the inverse of $f(x) = 2\sqrt{\frac{1}{3}(x-1)} + 2$. Protend to plug a # into x, How would you evaluate? $$\begin{array}{c|c} -1 & +1 \\ \times \frac{1}{3} & \div \frac{1}{3} & \cdots \times 3 \\ \end{array}$$ $$\begin{array}{c} \times 2 & \div 2 \\ +2 & -2 \end{array}$$ $$\begin{array}{ccc} -1 & +1 \\ x\frac{1}{3} & \div \frac{1}{2} \cdot \cdot \cdot x^{3} \\ 1 & 1 \\ 1 & 2 \\ 1 & 2 \end{array}$$ $$\begin{array}{cccc} -1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}$$ $$\begin{array}{cccc} -1 & 1 & 3 \\ 2 & 2 & 3 \end{array}$$ $$\begin{array}{cccc} -1 & 2 & 3 & 3 \\ 2 & 2 & 3 \end{array}$$ #### **Example 1.4.4** Determine the inverse of $g(x) = -2(x-1)^2 + 3$. Note that the natural domain of g(x) is $(-\infty, \infty)$. However, g(x) does not pass the HLT so its inverse is not a function. Determine a restricted domain for g(x) so that $g^{-1}(x)$ is a function. $$g^{-1}(x) = (1) \frac{x-3}{-2} + 1$$ Us $$(-\infty,]$$ or $[1, \infty)$ #### **Example 1.4.5** Given $f(x) = kx^2 - 3$ and given $f^{-1}(5) = 2$, find k. Two his thods? $$f'(x) \Rightarrow (5,2)$$ $$f(x) \Rightarrow (2,5)$$ $$5 = k(2)^2 - 3$$ $$f(x) = 2x^2 - 3$$ #### **Success Criteria:** - I can determine the equation of an inverse function using various methods - I can determine whether an inverse relation is a function, and whether or not the domain needs to be restricted # 1.5 Piecewise Defined Functions **Learning Goals:** We are learning to understand, interpret, and graph situations that are described by piecewise functions; and learning the properties of the absolute value function. Some aspects of "reality" exhibit different (as opposed to changing) To capture those different behaviors mathematically may require using different over different intervals/pieces of the domain. ### Absolute Value Before discussing piecewise defined functions in general, we will first review the concept of absolute value. #### **Definition 1.5.1** The absolute *value* of a number, $$x$$, is given by $$\begin{vmatrix} \times \\ = \\ - \times \end{vmatrix} \times \stackrel{?}{=} O \stackrel{(\diamond, \infty)}{=} O$$ e.g.'s $$|-8| = -(-8) = 8$$ #### **Absolute Value Functions** We can define the function which returns the absolute value for any given number as $$f(x) = |x| = \begin{cases} x, & \text{for } \infty \\ -x, & \text{for } \infty \end{cases}$$ Picture (Two behaviours!) We can go further and define functions which return the absolute value for more complicated expressions. e.g. Sketch $g(x) = |x^2 - 1|$ (note: g(x) takes the absolute value of the *functional values* for the "basic" function $f(x) = x^2 - 1$) > Draw f(x) = x2-1 -> Next, take the absolute value of the graph. (Three functional behaviours) # Absolute Value and Domain Intervals (and Quadratic Inequalities) e.g.'s Sketch the solution sets of the following inequalities: - a) x > -1 - b) $x \le 2$ - c) $1 < x \le 4$ - d) -2 < x < 2 Note the symmetry in part d)! Sometimes it's useful to think of absolute value as Using the above notion we can thus use absolute value to denote the interval -2 < x < 2 as e.g. Solve the quadratic equation $$x^2 = 4$$ e.g. Solve the quadratic inequalities, and sketch the solution sets: a) $$x^2 < 4$$ b) $$x^2 \ge 3$$ And now we return our attention to general Piecewise Defined Functions #### **Example 1.5.1** You are saving for university, and place \$1000 into a sock every six months. After 18 months you wake up and put the money in your sock into an interest bearing bank account. You continue making deposits. Give a graphical representation of this situation. What is the behaviour of the amount of money you have saved? How is the behaviour changing? Note the notation we use for piecewise defined functions. Each functional behaviour has a mathematical representation, defined over its own piece of the domain (just like the Absolute Value function we considered earlier. ### **Example 1.5.2** Determine the graphical representation for: Thine the graphical representation for: $$f(x) = \begin{cases} x^2, & x \in [-1, 2) \\ 2, & x \in [2, 3] \\ |x+1, & x \in (3, \infty) \\ \text{Stort} \end{cases}$$ $$\begin{cases} x^2 + x \in [-1, 2] \\ 2 + x \in [2, 3] \end{cases}$$ $$\begin{cases} x + 1, & x \in (3, \infty) \\ \text{Stort} \end{cases}$$ #### **Example 1.5.3** Determine a possible algebraic representation which describes the given functional behaviour. **Figure 1.5.3** #### **Success Criteria:** - I can absolutely understand the absolute value function - I can graph the piecewise function by graphing each piece over the given interval - I can determine if a piecewise function is continuous or not