Advanced Functions

Course Notes

Unit 4 – Rational Functions, Equations and Inequalities

We are learning to

- sketch the graphs of simple rational functions
- solve rational equations and inequalities with and without tech
- apply the techniques and concepts to solve problems involving rational models

Unit 4 – Rational Functions, Equations and Inequalities

Contents with suggested problems from the Nelson Textbook (Chapter 5)

4.1 Introduction to Rational Functions and Asymptotes

Pg. 262 #1 - 3

4.2 Graphs of Rational Functions

Pg. 272 #1, 2 (Don't use any tables of values!), 4 - 6, 9, 10

4.4 Solving Rational Equations

Pg. 285 - 287 #2, 5 – 7def, 9, 12, 13

4.5 Solving Rational Inequalities

Pg. 295 - 297 #1, 3, 4 – 6 (def), 9, 11

4.1 Rational Functions, Domain and Asymptotes

Learning Goal: We are learning to identify the asymptotes of rational functions.

Definition 4.1.1

A **Rational Function** is of the form

$$f(x) = \frac{p(x)}{g(x)}$$
, $g(x) \neq 0$ and both $p(x)$ and $g(x)$ are polynomial functions

e.g.
$$f(x) = \frac{3x^2 - 5x + 1}{2x - 1}$$
 is a ratioal function
$$g(x) = \frac{\sqrt{2x + 5}}{3x - 2}$$
 to because $\sqrt{2x + 5}$ is not a polymonal

Domain

Definition 4.1.2

Given a rational function $f(x) = \frac{p(x)}{q(x)}$, then the **natural domain** of f(x) is given by

$$D_{s} = \left\{ X \in \mathbb{R} \mid q(x) \neq 0 \right\}$$
Ly zeros of $q(x)$.

Example 4.1.1

Determine the natural domain of
$$f(x) = \frac{x^2 - 4}{x - 3}$$
.

$$D_{\xi} = \{x \in \mathbb{R} \mid x \neq 3\}$$

$$x \in (-\infty, 3) \cup (3, \infty)$$

Asymptotes

There are 3 possible types of **asymptotes**:

1) Vertical Asymptotes

Horizontal Asymptotes

3) Oblique Asymptotes

Vertical Asymptotes

A rational function $f(x) = \frac{p(x)}{q(x)}$ MIGHT have a V.A. when q(x) = 0, but there may be a hole discontinuity instead. A quick bit of algebra will dispense the mystery.

Example 4.1.2

Determine the domain, and V.A., or hole discontinuities for:

a)
$$f(x) = \frac{5x}{x^2 - x - 6}$$

Fluory

Everything.
$$\int (x) = \frac{5x}{(x^2 - x - 6)}$$

$$X \in (-\infty, -2) \cup (-2, 3) \cup (3, \infty)$$

b)
$$h(x) = \frac{x+3}{x^2-9}$$

$$h(x) = \frac{x+3}{x^3-9}$$

$$h(x) = \frac{x+3}{x-3}$$

$$\times \in (-\infty, -3) \stackrel{\circ}{\cup} (-3, 3) \stackrel{\circ}{\cup} (3, \infty)$$

c)
$$g(x) = \frac{x^2 - 4}{x + 2}$$

$$g(x) = \frac{(x-2)(x+2)}{(x+2)}$$

$$g(x) = x - 2$$

$$\times \in (-0, -2) \cup (-2, \infty)$$

Horizontal Asymptotes

the end behavior of the rational function Here we are concerned with

i.e. We are asking, given a rational function
$$f(x) = \frac{p(x)}{q(x)}$$
, how is $f(x)$ behaving as $x \to \pm \infty$.

Now, since p(x) and q(x) are both polynomials, they have an order (degree). We must consider three possible situations regarding their order:

1) Order of p(x) >Order of q(x)e.g. $f(x) = \frac{x^3 - 2}{x^2 + 1}$ order 3

2) Order of numerator = Order of denominator

e.g.
$$f(x) = \frac{2x^2 - 3x + 1}{3x^2 + 4x - 5}$$

If x is MASSIVE the stuff behind the leading term are inconsignation/irrelevant what's left is $\frac{2x^2}{3x^2} = \frac{2}{3} = y$ is the horizontal asymptote

e.g. Determine the horizontal asymptote of $g(x) = \frac{3x - 4x^5}{5x^5 + 2x - 1}$

$$H.A.$$
 13 $Y = \frac{-4}{5}$

3) Order of numerator
$$p(x)$$
 < Order of denominator $q(x)$

e.g.
$$f(x) = \frac{x^2 - 5x + 6}{x^5 + 7}$$

$$\frac{(100)^{3}}{(100)^{5}} = \frac{10,000}{10,000,0000000} = \frac{1}{\text{Really Big #}} = \frac{\text{close to}}{\text{Zero}}$$

Oblique Asymptotes

These occur when the order of p(x) is exactly one bigger than q(x)

e.g.
$$f(x) = \frac{x^2 - 2x + 3}{x + 1}$$

With Oblique Asymptotes we are still dealing with when Dehaviors

O.A. have the form y = mx + b (shocking, I know!) The question we have to face is this:

How do we find the line representing the O.A.?

Ans: by polynomial dissen!!
The O.A. is the quotient.

$$S(x) = \frac{x^{2} - 2x + 3}{x + 1} - 1 \begin{vmatrix} 1 & -2 & 3 \\ & -1 & 3 \end{vmatrix}$$

$$\frac{1}{1} - \frac{3}{3} = \frac{6}{1}$$
The O.A. is $y = |x - 3|$

$$g(x) = \frac{x^{5} - 2x^{3} + 3x^{3} - 1}{x^{4}}$$

$$x^{4} = x^{5} = x^{5} = x^{5} + 3x^{3} - 1$$

$$x^{4} = x^{5} =$$

(Rough) Sketch of
$$f(x) = \frac{x^2 - 2x + 3}{x + 1}$$

o.a.
$$y = \frac{7}{7} \times -\frac{6}{3}$$

Determine the equations of all asymptotes, and any hole discontinuities for:

a)
$$f(x) = \frac{x+2}{x^2+3x+2}$$
 order \(\frac{1}{2}\)

$$S(y) = \frac{x+2}{(x+1)(x+2)}$$

b)
$$g(x) = \frac{4x^2 - 25}{|x^2 - 9|}$$

$$g(y) = \frac{(2x-5)(2x+5)}{(x-3)(x+3)}$$

$$\frac{V.A.}{Hole} = \frac{X = -1}{X = -2}$$

$$H.A. = \frac{Y = 0}{0.A.}$$

$$0.A. = \frac{1}{1000}$$

U.A.
$$X=-3$$
, 3
Hole More

H.A. $Y=\frac{4}{7}=4$

O.A None

c)
$$h(x) = \frac{x^2 + 0x + 0}{x+3}$$

V.A.	X=-3
Hole	none
H.A.	None
O.A.	y=k-3

Determine an equation for a function with a vertical asymptote at
$$x = -3$$
, and a horizontal asymptote at $y = 0$.

$$f(x) = \frac{1}{(x+3)}$$

Example 4.1.5

Determine an equation for a function with a hole discontinuity at x = 3.

$$f(x) = \frac{(x-3)}{(x-3)}$$

Success Criteria:

- I can identify a hole when there is a common factor between p(x) and q(x)
- I can identify a vertical asymptote as the zeros of q(x)
- I can identify a horizontal asymptote by studying the degrees of p(x) and q(x)
- I can identify an oblique asymptote when the degree of p(x) is exactly 1 greater than q(x)

4.2 Graphs of Rational Functions

Learning Goal: We are learning to sketch the graphs of rational functions.

Note: In Advanced Functions we will only consider rational functions of the form $f(x) = \frac{ax+b}{cx+d}$

$$f(x) = \frac{ax + b}{cx + d}$$

Rational Functions of the form $f(x) = \frac{ax+b}{cx+d}$ will have:

1) One Vertical Asymptote

Comes from the denominator
$$CX+d=0$$
 $X=\frac{-d}{C}$

2) One Zero (unless $\alpha = 0$)

Comes from the numerator

$$a \times +b = 0$$
, $x = a$
 $a \times +b = 0$, $x = a$
 $a \times +b = 0$

3) Functional Intercept

$$S(0) = \frac{A(0) + b}{A(0) + d} = \frac{b}{d} \qquad \left(0, \frac{b}{d}\right)$$

4) A Horizontal Asymptote

H.A. is
$$y = \frac{a}{2}$$
 If $a = 0$, H.A. is $y = 0$

5) These functions will always be either always increasing or always decleasing

Functional Behaviour Near A Vertical Asymptote

There are **FOUR** possible functional behaviours near a V.A.:

For functions of the form $f(x) = \frac{ax+b}{cx+d}$ we will see behaviours

The questions is, how do we know which?

We need to analyze the function near the V.A.

We need to become familiar with some **Notation**.

Consider some rational function with a sketch of its graph which looks like:

$$x \to 2^{-1eft \text{ side}} f(x) \to \infty$$

$$x \to 2^{+ \text{ right side}} f(x) \to -\infty$$

Example 4.2.1

Determine the functional behaviour of $f(x) = \frac{2x+1}{x-3}$ near its V.A.

$$x \rightarrow 3^{-}$$
, $f(x) \rightarrow -\infty$
Test $x = 2.99$ and $x = 2.999$
 $f(2.99) = -698$ $f(2.999) = -6998$

$$x \rightarrow 3^{-}$$
, $f(x) \rightarrow -\infty$
 $1est = 2.99 \text{ and } x = 2.999$
 $f(2.99) = -698$ $f(2.999) = -6998$ $f(3.00) = 7002$
 $f(3.00) = 7002$

We now have the tools to sketch some graphs!

Example 4.2.2

Sketch the graph of the given function. State the domain, range, intervals of increase/decrease and where the function is positive and negative.

b)
$$g(x) = \frac{3x-2}{2x+5}$$

$$Q_{3} = (-\infty, \frac{5}{3}) \cup (-\frac{5}{3}, \infty)$$

$$R_{3} = (-\omega, \frac{3}{2}) \cup (\frac{3}{2}, \omega)$$

$$g(x) > 0 \text{ when } x \in (-\infty, -\frac{5}{2}) \cup (\frac{3}{3}, \omega)$$

$$g(x) < 0 \text{ when } x \in (-\frac{5}{2}, \frac{3}{3})$$

Consider question #9 on page 274:

$$I(t) = \frac{15t + 25}{t}$$

Success Criteria:

- I can identify the horizontal asymptote as $\frac{a}{c}$ I can identify the vertical asymptote as $-\frac{d}{c}$
- I can identify the y-intercept as $\frac{b}{d}$
- I can identify the x-intercept as $-\frac{b}{a}$

4.4 Solving Rational Equations

Learning Goal: We are learning to solve rational equations. Think rationally!

Solving a Rational Equation is **VERY MUCH** like solving a Polynomial Equation. Thus, this stuff is so much fun it should be illegal. But it isn't illegal unless you break a rule of algebra. Math Safe!

Make Sure To Keep **RESTRICTIONS ON X** In Mind

This news that restrictions cannot be solutions.

Example 4.4.1
a) Solve
$$\frac{x}{5}$$
 $\frac{9}{18}$ $(5)(i3)$

b) Solve
$$\left(\frac{1}{x} - \frac{5x}{3} = \frac{2}{5}\right) (3)(5)(x)$$

RESTRICTIONS

$$15 - 25x^{2} = 6x$$

$$0 = 25x^{2} + 6x - 15$$
D.M.F

$$X = -0.9$$
 and $X = 0.66$

c) Solve
$$\left(\frac{3}{x} + \frac{4}{x+1} = \frac{2}{1}\right)$$

$$3(x+1) + 4x = 2 \times (x+1)$$

$$3x + 3 + 4x = 2x^2 + 2x$$

$$7x + 3 = 2x^2 + 2x$$
$$-7x - 3$$

$$0 = 2 \times -5 \times -3$$

$$O = (x-3)(2x+1)$$

d) Solve
$$\frac{10}{x^2-2x} + \frac{4}{x} = \frac{5}{x-2}$$
 $(x)(x-2)$

$$10 + 4(x-2) = 5x$$

$$10 + \frac{4}{10} = 5x$$

RESTRICTIONS
$$\begin{array}{c|c}
\times \neq 0 \\
\times \neq -l
\end{array}$$

$$\int_{-6}^{m:-6} A_{i} - 5$$

$$-6, +1$$

$$(2x - 6)(2x + 1)$$

$$(x - 3)(2x + 1)$$

$$x = 3/$$

$$x = \frac{-1}{2}/$$

However, X = 2: there are no soluthing to this equation.

e) Solve
$$(\frac{16x - \frac{5}{x + 2} = \frac{15}{x - 2} - \frac{60}{(x - 2)(x + 2)})}{(x + 2)(x - 2)}$$
 Restriction: $x \neq -2$ $x \neq 2$

$$|6x(x + 2)(x - 2) - 5(x - 2)| = |5(x + 2) - 60$$

$$|6x(x^2 - 4) - 5x| + |0| = |5x| + |30| - |60|$$

$$|6x| - |64x| - |5x| + |60| = |15x| - |30|$$

$$|6x| - |84x| + |40| = 0$$

$$|4x|^3 - |2x| + |40| = 0$$

Test:
$$f(2) = 9/2)^3 - 2/(2) + 10$$

= 32 - 42 + 10
= 0 : (x-2) is a factor

$$(x-2)(4x^2+8x-5)=0$$

$$(x-2)(2x+5)(2x-1)=0$$

$$X = \frac{5}{2}$$

$$X = \frac{1}{2}$$

$$A : 8 \\ (0, -2)$$

$$(4x + 10)(4x - 2)$$

$$(2x + 5)(2x - 1)$$

From your Text: Pg. 285 #10

The Turtledove Chocolate factory has two chocolate machines. Machine A takes m minutes to fill a case with chocolates, and machine B takes m + 10 minutes to fill a case. Working together, the two machines take 15 min to fill a case. Approximately how long does each machine take to fill a case?

the two machines take 15 min to fill a case. Approximately how long does each machine take to fill a case?

Rate of Work.

Machine
$$A = \frac{1}{M}$$

Machine $B = \frac{1}{M+10}$

Togethr = $\frac{1}{15}$

Machine $A = \frac{1}{M}$

Machine A

Success Criteria:

- I can recognize that the zeros of a rational function are the zeros of the numerator
- I can solve rational equations by multiplying each term by the lowest common denominator, then solving the resulting polynomial equation
- I can identify inadmissible solutions based on the context of the problem

4.5 Solving Rational Inequalities

Learning Goal: We are learning to solve rational inequalities using algebraic and graphical approaches.

The joy, wonder and peace these bring is really quite amazing

e.g. Solve
$$\left(\frac{x-2}{7} \ge 0\right)^7$$

$$x-2 \ge 0$$

$$x \ge 2$$

Example 4.5.1

Solve
$$\frac{x-2}{x+3} \ge 0$$

Note: For Rational Inequalities, with a variable in the denominator, you **CANNOT** multiply by the multiplicative inverse of the common denominator!!!!

We solve by using an Interval Chart

For the intervals, we split $(-\infty, \infty)$ at all zeros (where the numerator is zero), and all restrictions (where the denominator is zero) of the (SINGLE) rational expression. Keep in mind that it may take a good deal of algebraic manipulation to get a SINGLE rational expression...

Zero at
$$X=2$$
 rectiction of $X=-3$

Interval	$(-\infty, -3)$	[(-3, 2)]	$(2, \infty)$			
Test Value	-4	0	3			
x-2	—		+		-	
×+3		+	+			
Ratio	+	_	+	0 0	X-2 >0 X+3	when
	J				(-∞,-3) L	

Solve
$$\frac{1}{x+5} < 5$$

$$\frac{1}{x+5} - \frac{5(x+5)}{1(x+5)} = 0$$

$$\frac{1}{x+5} - \frac{5(x+5)}{x+5} < 0$$

DO NOT CROSS MULTIPLY (or else)

- Get everything on one side
- Simplify into a single Rational Expression using a common denominator
- Interval Chart it up

$$\frac{1-5x-25}{x+5} \ge 0$$

$$\frac{-5x-24}{x+5} \ge 0$$

Intervolu	(-0, -5)	(-5, -4.8)	(-4.8,00)	
T. V.	-6	~4.9	0	_
-5x-24	+	+		_
× +5		+	+	_
Ratio		+ (
00	$\frac{1}{x+5} < 5$	when >	$\langle E(-\omega, -5) \rangle$	U(-48, D)

Solve
$$\frac{x^2 + 3x + 2}{x^2 - 16} \ge 0$$

FACTORED FORM IS YOUR FRIEND

$$\frac{(x+2)(x+1)}{(x-4)(x+4)} \ge 0$$

Zeros at x=-2,-1

Restrictions at x=-4, 4

Intervals	$\left(-\infty, -4\right)$	(-4, -2)	((-2, -1)	1(-1,4)	1 (4,00)	
T.U.	-5	-3	-1.5	0	5	_
X + Z	~	_	+	+	+	_
X +1	_		_	7	+	_
x -4	_				+	
x + 4		+	+	+	+	
Ratio	1		+		+	
- ,	9		7		1	

$$\frac{x^{2}+3x+2}{x^{2}-16} \ge 0 \text{ when } X \in (-\infty, -9) \cup [-2, -1] \cup (4, \infty)$$

Solve
$$\frac{3}{x+2} \le x$$

$$0 \leq \frac{\chi(x_{12})}{(x_{12})} \frac{3}{x_{12}}$$

$$0 \leq \frac{x^2 + 2x - 3}{x + 2}$$

$$O = \frac{(x+3)(x-1)}{x+2}$$

(estriction at
$$x = -2$$

aple 4.5.4

Solve
$$\frac{3}{x+2} \le x$$

$$0 \le \frac{x^2 + 2x - 3}{x+2}$$

$$0 = \frac{x^2 + 2x - 3}{x+2}$$

$$0 = \frac{(x+3)(x-1)}{x+2}$$

$$0 = \frac{(x+3)(x-1)}{x+2}$$

$$0 = \frac{x^2 + 2x - 3}{x+2}$$

$$0 = \frac{(x+3)(x-1)}{x+2}$$

$$0 = \frac{(x+3)(x-1)}{x+2}$$

$$0 = \frac{(x+3)(x-1)}{x+2}$$

Intervals	(-0, -3)	(-3,-2)	(-2,1)	$(1, \infty)$
T.U.	-4	-2.5	0	2
X+3	_	+	7	+
× -/	_	_	_	+
x +2	_		+	+
Ratio	_	+	_	+
		· 1	,	T C

$$\frac{3}{x+2} \leq x \text{ who } x \in [-3, -2) \cup [1, \infty)$$

From your Text: Pg. 296 #6a Using **Graphing Tech**

Solve
$$\frac{x+3}{x-4} \ge \frac{x-1}{x+6}$$

Note: There are **TWO** methods, both of which require a **FUNCTION** (let f(x) = ... returns)

Success Criteria:

- I can recognize that an inequality has many possible intervals of solutions
- I can solve an inequality algebraically, using an interval chart
- I can solve an inequality graphically