Chapter 6 Problem Set – Trigonometric Identities and Equations

6.1 Basic Trigonometric Functions #3cdef, 5cdef (pg 392 in textbook)

3. Use the cofunction identities to write an expression that is equivalent to each of the following expressions.

c)
$$\tan \frac{3\pi}{8}$$

d) $\cos \frac{5\pi}{16}$
e) $\sin \frac{\pi}{8}$
f) $\tan \frac{\pi}{6}$

Write an expression that is equivalent to each of the following expressions, using the related acute angle.

c)
$$\tan \frac{5\pi}{4}$$

d) $\cos \frac{11\pi}{6}$
e) $\sin \frac{13\pi}{8}$
f) $\tan \frac{5\pi}{3}$

6.2 Compound Angle Formulae #3 - 6, 8 - 10, 13 (pg 400 in textbook)

- Express each angle as a compound angle, using a pair of angles from the special triangles.
 - a) 75° c) $-\frac{\pi}{6}$ e) 105° b) -15° d) $\frac{\pi}{12}$ f) $\frac{5\pi}{6}$
- 4. Determine the exact value of each trigonometric ratio.
 - a) $\sin 75^{\circ}$ c) $\tan \frac{5\pi}{12}$ e) $\cos 105^{\circ}$ b) $\cos 15^{\circ}$ d) $\sin \left(-\frac{\pi}{12}\right)$ f) $\tan \frac{23\pi}{12}$
- 5. Use the appropriate compound angle formula to determine the exactvalue of each expression.

a)
$$\sin\left(\pi + \frac{\pi}{6}\right)$$
 c) $\tan\left(\frac{\pi}{4} + \pi\right)$ e) $\tan\left(\frac{\pi}{3} - \frac{\pi}{6}\right)$
b) $\cos\left(\pi - \frac{\pi}{4}\right)$ d) $\sin\left(-\frac{\pi}{2} + \frac{\pi}{3}\right)$ f) $\cos\left(\frac{\pi}{2} + \frac{\pi}{3}\right)$

- Use the appropriate compound angle formula to create an equivalent expression.
 - a) $\sin(\pi + x)$ c) $\cos\left(x + \frac{\pi}{2}\right)$ e) $\sin(x \pi)$ b) $\cos\left(x + \frac{3\pi}{2}\right)$ d) $\tan(x + \pi)$ f) $\tan(2\pi - x)$

- 8. Determine the exact value of each trigonometric ratio.
- a) $\cos 75^{\circ}$ c) $\cos \frac{11\pi}{12}$ e) $\tan \frac{7\pi}{12}$ b) $\tan (-15^{\circ})$ d) $\sin \frac{13\pi}{12}$ f) $\tan \frac{-5\pi}{12}$ 9. If $\sin x = \frac{4}{5}$ and $\sin y = -\frac{12}{13}$, $0 < x < \frac{\pi}{2}$, $\frac{3\pi}{2} < y < 2\pi$, evaluate a) $\cos (x + y)$ c) $\cos (x - y)$ e) $\tan (x + y)$ b) $\sin (x + y)$ d) $\sin (x - y)$ f) $\tan (x - y)$ 10. α and β are acute angles in quadrant I, with $\sin \alpha = \frac{7}{25}$ and $\cos \beta = \frac{5}{13}$. Without using a calculator, determine the values of $\sin (\alpha + \beta)$ and $\tan (\alpha + \beta)$.
- **13.** Simplify $\frac{\sin(f+g) + \sin(f-g)}{\cos(f+g) + \cos(f-g)}$.

6.3 Double Angle Formulae #2, 4, 6, 7, 12 (pg 407 in textbook)

- Express each of the following as a single trigonometric ratio and then evaluate.
 - b) $\cos^2 30^\circ \sin^2 30^\circ$ c) $2 \sin \frac{\pi}{12} \cos \frac{\pi}{12}$ f) $2 \tan 60^\circ \cos^2 60^\circ$
- 4. Determine the values of sin 2θ , cos 2θ , and tan 2θ , given $\cos \theta = \frac{3}{5}$ and $0 \le \theta \le \frac{\pi}{2}$.
- 6. Determine the values of $\sin 2\theta$, $\cos 2\theta$, and $\tan 2\theta$, given $\sin \theta = -\frac{12}{13}$ and $\frac{3\pi}{2} \le \theta \le 2\pi$.
- 7. Determine the values of $\sin 2\theta$, $\cos 2\theta$, and $\tan 2\theta$, given $\cos \theta = -\frac{4}{5} \operatorname{and} \frac{\pi}{2} \le \theta \le \pi$.
- Use the appropriate compound angle formula and double angle formula to develop a formula for
 - a) $\sin 3\theta$ in terms of $\cos \theta$ and $\sin \theta$
 - b) $\cos 3\theta$ in terms of $\cos \theta$ and $\sin \theta$
 - c) $\tan 3\theta$ in terms of $\tan \theta$

6.4 Trigonometric Identities #8 - 11 (pg 417 in textbook)

- 8. Prove that $\frac{1 + \tan x}{1 + \cot x} = \frac{1 \tan x}{\cot x 1}$.
- 9. Prove each identity.

a)
$$\frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta + \sin \theta \cos \theta} = 1 - \tan \theta$$

b)
$$\tan^2 x - \sin^2 x = \sin^2 x \tan^2 x$$

c)
$$\tan^2 x - \cos^2 x = \frac{1}{\cos^2 x} - 1 - \cos^2 x$$

d)
$$\frac{1}{1 + \cos \theta} + \frac{1}{1 - \cos \theta} = \frac{2}{\sin^2 \theta}$$

10. Prove each identity.

a)
$$\cos x \tan^3 x = \sin x \tan^2 x$$

b) $\sin^2 \theta + \cos^4 \theta = \cos^2 \theta + \sin^4 \theta$
c) $(\sin x + \cos x) \left(\frac{\tan^2 x + 1}{\tan x}\right) = \frac{1}{\cos x} + \frac{1}{\sin x}$
d) $\tan^2 \beta + \cos^2 \beta + \sin^2 \beta = \frac{1}{\cos^2 \beta}$
e) $\sin \left(\frac{\pi}{4} + x\right) + \sin \left(\frac{\pi}{4} - x\right) = \sqrt{2} \cos x$
f) $\sin \left(\frac{\pi}{2} - x\right) \cot \left(\frac{\pi}{2} + x\right) = -\sin x$

a)
$$\frac{\cos 2x + 1}{\sin 2x} = \cot x$$

b)
$$\frac{\sin 2x}{1 - \cos 2x} = \cot x$$

c)
$$(\sin x + \cos x)^2 = 1 + \sin 2x$$

d)
$$\cos^4 \theta - \sin^4 \theta = \cos 2\theta$$

f)
$$\cot \theta + \tan \theta = 2 \cot 2\theta$$

g)
$$\frac{1 + \tan x}{1 - \tan x} = \tan \left(x + \frac{\pi}{4}\right)$$

h)
$$\csc 2x + \cot 2x = \cot x$$

i)
$$\frac{2 \tan x}{1 + \tan^2 x} = \sin 2x$$

j)
$$\sec 2t = \frac{\csc t}{\csc t - 2 \sin t}$$

k)
$$\csc 2\theta = \frac{1}{2}(\sec \theta)(\csc \theta)$$

l)
$$\sec t = \frac{\sin 2t}{\sin t} - \frac{\cos 2t}{\cos t}$$

6.5 Linear Trigonometric Equations #6, 7def, 8, 9abc (pg 427 in textbook) 6. Determine the solutions for each equation, where $0 \le \theta \le 2\pi$.

a)
$$\tan \theta = 1$$
 c) $\cos \theta = \frac{\sqrt{3}}{2}$ e) $\cos \theta = -\frac{1}{\sqrt{2}}$
b) $\sin \theta = \frac{1}{\sqrt{2}}$ d) $\sin \theta = -\frac{\sqrt{3}}{2}$ f) $\tan \theta = \sqrt{3}$

- 7. Using a calculator, determine the solutions for each equation on the interval $0^{\circ} \le \theta \le 360^{\circ}$. Express your answers to one decimal place.
 - d) $-3\sin\theta 1 = 1$
 - e) $-5\cos\theta + 3 = 2$
 - f) $8 \tan \theta = 10$
- 8. Using a calculator, determine the solutions for each equation, to two decimal places, on the interval $0 \le x \le 2\pi$.
 - a) $3 \sin x = \sin x + 1$ c) $\cos x 1 = -\cos x$
 - b) $5\cos x \sqrt{3} = 3\cos x$ d) $5\sin x + 1 = 3\sin x$
- 9. Using a calculator, determine the solutions for each equation, to two decimal places, on the interval $0 \le x \le 2\pi$.
 - a) $2 2 \cot x = 0$
 - b) $\csc x 2 = 0$
 - c) $7 \sec x = 7$

6.5 Quadratic Trigonometric Equations #4ade, 5acef, 6ac, 7 - 9 (pg 436 in textbook) **4.** Solve for θ , to the nearest degree, in the interval $0^\circ \le \theta \le 360^\circ$.

a) $\sin^2 \theta = 1$ d) $4 \cos^2 \theta = 1$ e) $3 \tan^2 \theta = 1$

5. Solve each equation for x, where $0^{\circ} \le x \le 360^{\circ}$. a) $\sin x \cos x = 0$ c) $(\sin x + 1) \cos x = 0$ e) $(\sqrt{2} \sin x - 1)(\sqrt{2} \sin x + 1) = 0$ f) $(\sin x - 1)(\cos x + 1) = 0$

- **6.** Solve each equation for *x*, where $0 \le x \le 2\pi$.
 - a) $(2\sin x 1)\cos x = 0$
 - c) $(2\cos x + \sqrt{3})\sin x = 0$

- **7.** Solve for θ to the nearest hundredth, where $0 \le \theta \le 2\pi$.
 - a) $2\cos^2\theta + \cos\theta 1 = 0$
 - b) $2\sin^2\theta = 1 \sin\theta$
 - c) $\cos^2 \theta = 2 + \cos \theta$
 - d) $2\sin^2\theta + 5\sin\theta 3 = 0$
 - e) $3 \tan^2 \theta 2 \tan \theta = 1$
 - f) $12\sin^2\theta + \sin\theta 6 = 0$

8. Solve each equation for *x*, where $0 \le x \le 2\pi$.

- a) $\sec x \csc x 2 \csc x = 0$ d) $2 \cot x + \sec^2 x = 0$
- b) $3 \sec^2 x 4 = 0$ e) $\cot x \csc^2 x = 2 \cot x$
- c) $2 \sin x \sec x 2\sqrt{3} \sin x = 0$ f) $3 \tan^3 x \tan x = 0$
- **9.** Solve each equation in the interval $0 \le x \le 2\pi$. Round to two decimal places, if necessary.
 - a) $5\cos 2x \cos x + 3 = 0$ c) $4\cos 2x + 10\sin x 7 = 0$
 - b) $10 \cos 2x 8 \cos x + 1 = 0$ d) $-2 \cos 2x = 2 \sin x$