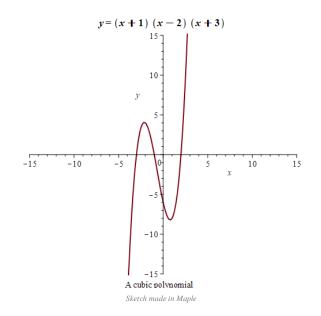
Advanced Functions

Fall 2017 Course Notes

Chapter 2 – Polynomial Functions

We will learn

- about the algebraic and geometric structure of polynomial functions of degree three and higher
- algebraic techniques for dividing one polynomial by another
- use the techniques we learn for division to FACTOR polynomials
- solve problems involving Polynomial Equations and Inequalities



Chapter 2 – Polynomial Functions

Contents with suggested problems from the Nelson Textbook (Chapter 3)

- **2.1 Polynomial Functions: An Introduction** *Pg* 30 32 Pg. 122 #1 − 3 (Review on Quadratic Factoring) Pg. 127 – 128 #1, 2, 100, 5, 6
- **2.2 Characteristics of Polynomial Functions** *Pg* 33 38 Pg. 136 - 138 #1 – 5, 7, 8, 10, 11

2.3 Zeros of Polynomial Functions – Pg 39 – 43

READ ex 3, 4, 5 on Pg 141 - 144 Pg. 146 - 148 #1 2, 4, 6, 8ab, 10, 12, 13b

2.4 Dividing Polyomials – Pg 44 - 51

Pg. 168 - 170 #2, 5, 6acdef, 10acef, 12, 13

2.5 The Factor Theorem – Pg 52 – 54

Pg. 176 - 177 #1, 2, 5 - 7 abcd, 8ac, 9, 12

2.6 Sums and Differences of Cubes – Pg 55 – 56

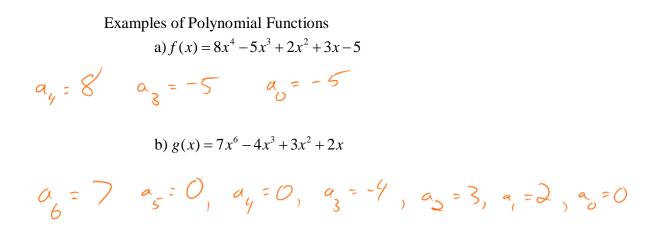
Pg 182 #2aei, 3, 4

2.1 Polynomial Functions: An Introduction

 $e_{x}: f(x) = 3x^{3} - 2x^{2} + 8$

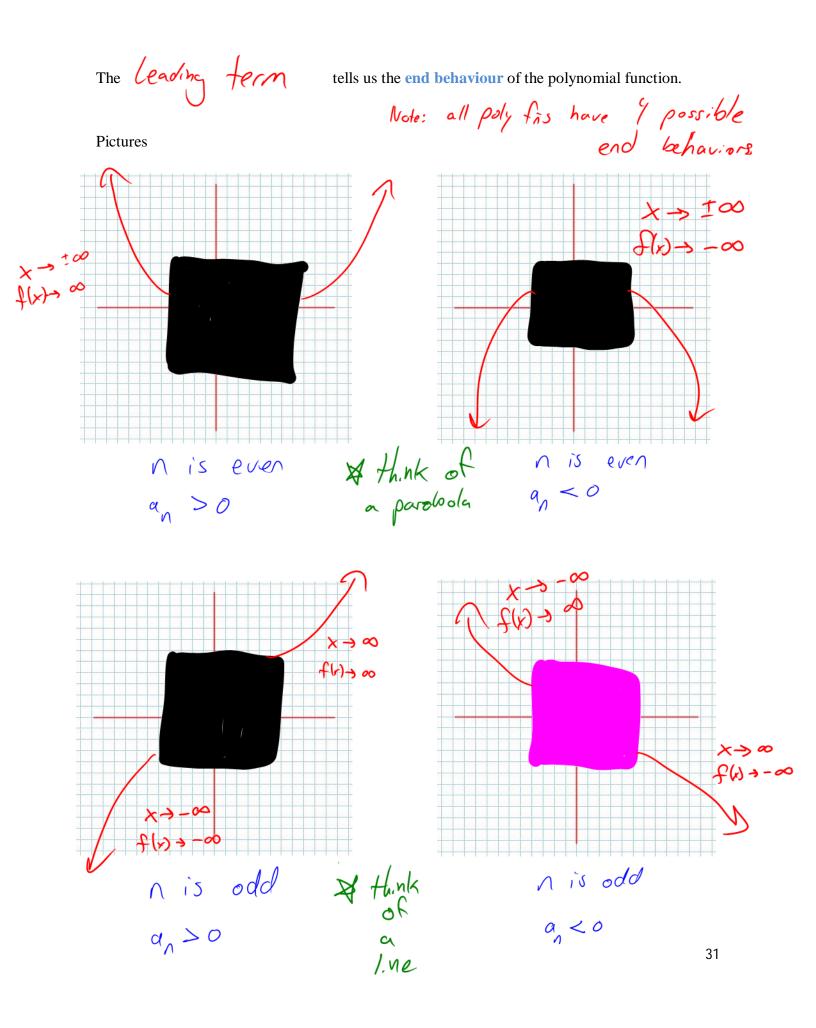
Definition 2.1.1 A Polynomial Function is of the form

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_n x^n + a_n x^n$



Notes: The **TERM** $a_n x^n$ in any polynomial function (where *n* is the **highest power** we see) is

called the $\[\]$ called the following terms $\[\]$ in descending order. The Leading term has two components: 1) Leading coefficient, and is positive or negative 2) N -> the highest power, it can be odd or even



tion 2.1.2 The order of a polynomial \bullet finits the value of the highest power, or just the degree of the leading them. **Definition 2.1.2** leading term. ex: $g(x) = 2x^3 + 3x^2 - 8x^5 - 1$ The order of g(x) is 5

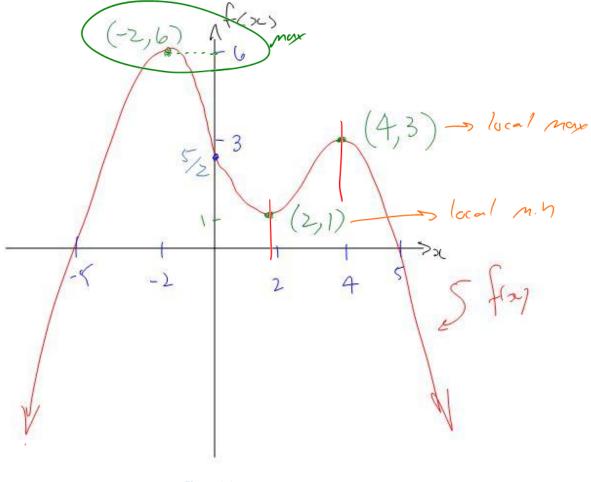
Class/Homework for Section 2.1

Pg. 122 #1 – 3 (Review on Quadratic Factoring) Pg. 127 – 128 #1, 2, 3cd, 5, 6

2.2 Characteristics (Behaviours) of Polynomial Functions

Today we open, and look inside the black box of mystery

Consider the sketch of the graph of some function, f(x):



Observations about f(x):

1) f(x) is a polynomial of even order (degree). The end behaviors are the Same.

- 2) The leading coefficient is $\Lambda \log a + iv\ell$.
- 3) f(x) has 3 turning points (where the functional behaviour of INCREASING/DECREASING switches from one to the other.)

- 4) f(x) has 2 zeros. f(-5) = 0 and f(5) = 0 \rightarrow zeros at x = -5 and x = 5
- 5) f(x) is increasing on $\chi \in (-\infty, -2) \cup (2, 4)$
 - f(x) is decreasing on $\chi \in (-\Im, \Im) \cup (\Upsilon, \infty)$

6) f(x) has a Maximum functional value, of 6. The Max accurs at x = -2. This Max is also called the global maximum Meaning it is the absolute highest value.

7) f(x) has a local min at (2,1). In the neighbourhood of X=2, there is a local M.M of 1.

Consider the sketch of the graph of some function g(x):

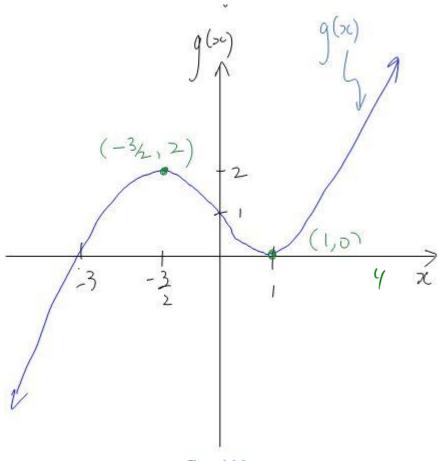


Figure 2.2.2

Observations about
$$g(x)$$
:
1. $g(x)$ is odd (degree, not symmetry). End behaviors are opposite.
2. $g(x)$ has two zeros at $x = -3$ and $x = [.$
3. $g(x)$ has a local max of 2 around $x = \frac{-3}{2}$ $(-\frac{3}{2}, 2)$
 $g(x)$ has a local min of 0 around $x = 1$ $(1, 0)$
4. $g(x)$ has 2 turning points
5. $g(x)$ has a positive leading coefficient
6. $g(x)$ increasing on $(-\infty, -\frac{3}{2})U(1, \infty)$, decreasing $(-\frac{3}{2}, 1)$

General Observations about the Behaviour of Polynomial Functions

1) The Domain of all Polynomial Functions is

{x ER} or (-00,00)

- 2) The Range of ODD ORDERED Polynomial Functions is {f(x) < R } or (-0,0)
- 3) The Range of EVEN ORDERED Polynomial Functions depends on
 1. the sign of the L.C. → if positive ≥
 → if negative, ≤
 2. the value of the global maximin,

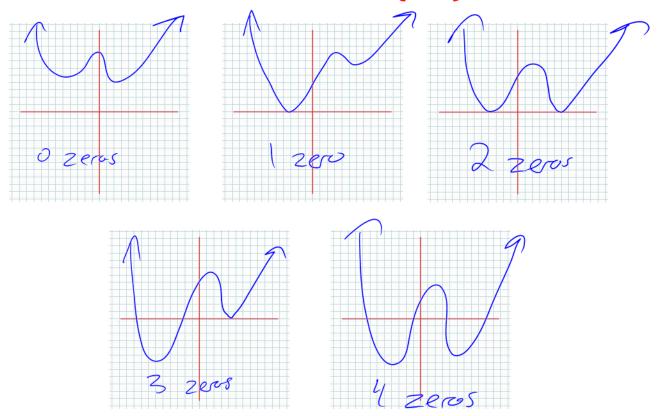
Even Ordered Polynomials

have

Zeros: A Polynomial Function, f(x), with an even degree of "n" (i.e. n = 2, 4, 6...) can

Ozeros, 1, 2 A Zeros,

e.g. A degree 4 Polynomial Function (with a positive leading coefficient) can look like:



Turning Points:

The minimum number of turning points for an Even Ordered Polynomial Function is one, because you must turn

The maximum number of turning points for a Polynomial Function of (even)

Odd Ordered Polynomials

Turning Points:

min # of T.P. is zero

$$f(x) = \underline{a}(\underline{x},t)(\underline{a},t)(\underline{a},t)(\underline{a},t)$$
$$\rightarrow \underline{a}(\underline{x},t)(\underline{a},t)($$

Example 2.2.1 (#2, for #1b, from Pg. 136)

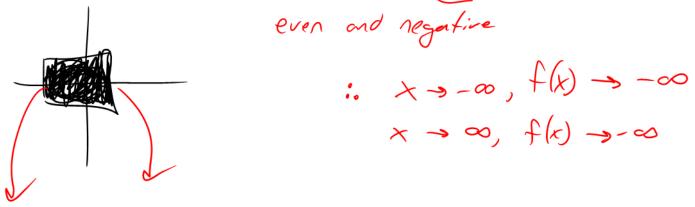
Determine the minimum and maximum number of zeros and turning points the given function may have: $g(x) = 2x^{5} - 4x^{3} + 10x^{2} - 13x + 8$

order is
$$5^{n}$$
: odd Zeros: $mh = 1$ max = 5^{n}
L.C. is 2 : positive $T.P.: mh = 0$ max = 4^{n-1}

1

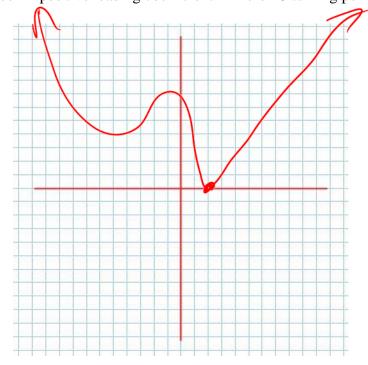
Example 2.2.2 (#4d from Pg. 136)

Describe the end behaviour of the polynomial function using the order and the sign on the leading coefficient for the given function: $f(x) = -2x^4 + 5x^3 - 2x^2 + 3x - 1$



Example 2.2.3 (#7*c from Pg. 137*)

Sketch a graph of a polynomial function that satisfies the given set of conditions: Degree 4 - positive leading coefficient - 1 zero - 3 turning points.



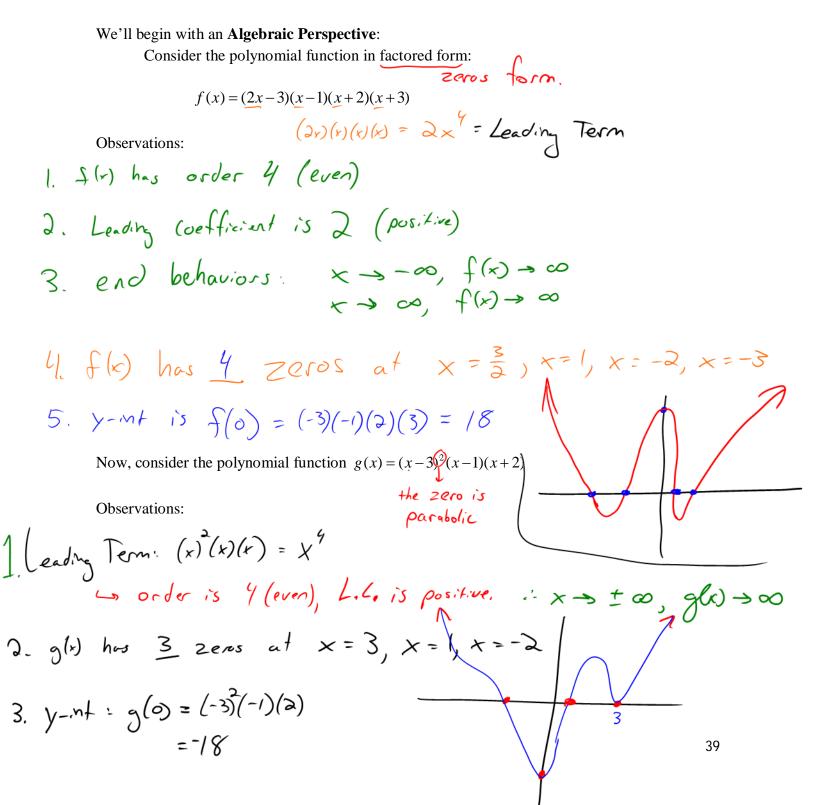
Class/Homework for Section 2.2

Pg. 136 - 138 #1 – 5, 7, 8, 10, 11

2.3 Zeros of Polynomial Functions

(Polynomial Functions in Factored Form)

Today we take a deeper look inside the Box of Mystery, carefully examining Zeros of Polynomial Functions



Geometric Perspective on Repeated Roots (zeros) of order 2

Consider the quadratic in factored form: $f(x) = (x-1)^2$

All order 2 zeros act like parabolas.

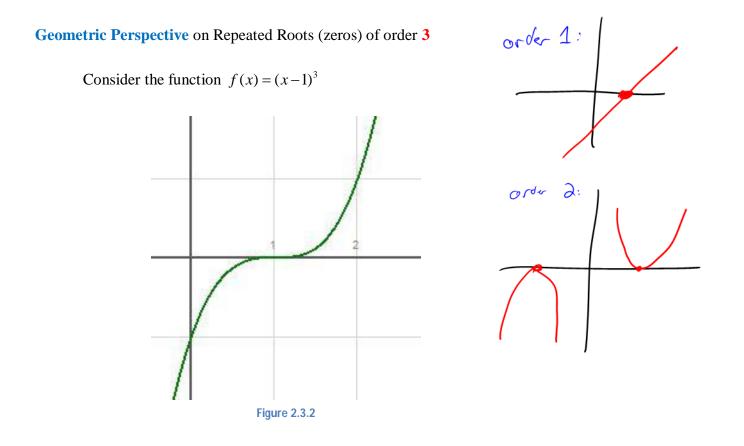
Figure 2.3.1

Consider the polynomial function in factored form: $h(t) = (t + 1)^{3}(2t - 5)$

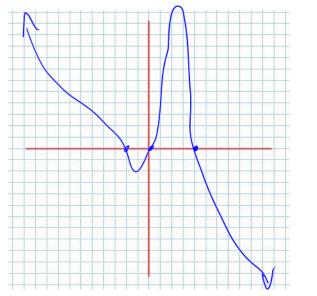
Observations:

Ubservations.
1. Leading term is
$$(t)^{3}(\partial t) = \partial t^{4}$$

Le order is $1(even)$, positive and $x = 100$, $h(t) = 00$
 $\partial_{e} h(t)$ has $\partial_{e} 2eros$, $\overline{t} = -1$, $t = \frac{5}{2}$
Order 3
3. y-int: $h(0) = (1)^{3}(-5) = -5$



Example 2.3.1 Sketch a (possible) graph of f(x) = -2x(x+1)(x-2)



Leading term:
$$(-2x)(x)(x)$$

 $= -2x^{3-3} \circ dd$
 $1 \quad negative$
 $x \rightarrow -\infty, f(0) \rightarrow \infty$
 $x \rightarrow \infty, f(x) \rightarrow -\infty$
 $2eros: x = -1, x = 2, x = 0$
 $y - nt: f(0) = 0$

Families of Functions

are "broadly related" (e.g.

Polynomial functions which share the same all quadratics are in the "order 2 family").

Polynomial Functions which share the same order and zeros are more tightly related.

Polynomial Functions which share the same order, zeros, and end behaviors are like siblings.

order

Example 2.3.2

The family of functions of order 4, with zeros x = -1, 0, 3, 5 can be expressed as:

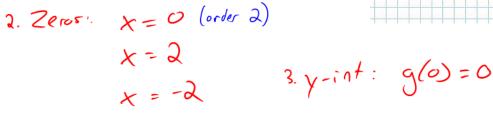
 $f(x) = \alpha (x + 1)(x + 0)(x - 3)(x - 5)$ Ly the L.C. distinguishes from family members

Example 2.3.3

Sketch a graph of $g(x) = 4x^4 - 16x^2$

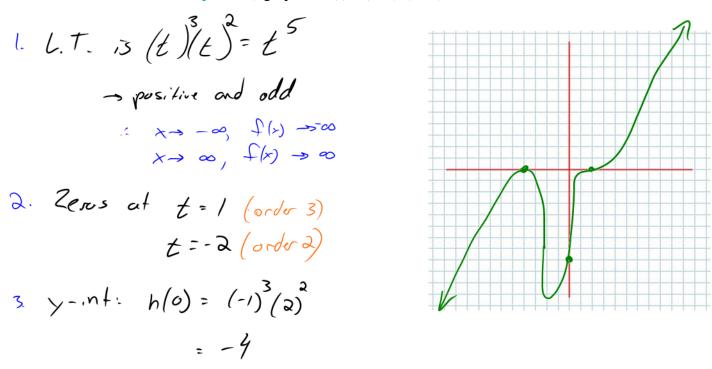
$$\begin{aligned} & \int cot x - \int v dt \\ & g(x) = \frac{4}{x^2} \left(\frac{x^2 - 4}{x^2 - 4} \right) \\ & g(x) = \frac{4}{x^2} \left(\frac{x}{x + 2} \right) \left(\frac{x}{x - 2} \right) \end{aligned}$$

1. L.T. of 4x4 Ly positive and even :- X-> - 0, f(x)-> 00 x -> 00, f(x) -> 00



Example 2.3.4

Sketch a (possible) graph of $h(t) = (t-1)^3(t+2)^2$



Example 2.3.5

Determine the quartic function, f(x), with zeros at x = -2, 0, 1, 3, if f(-1) = -2. $\begin{aligned}
& \int (x) &= \alpha \left(x + \partial \right) (x + \partial) (x - 1) (x - 3) \\
& -\partial &= \alpha \left(-1 + \partial \right) (-1 + \partial) (-1 - 1) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 - 1) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 - 1) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 - 1) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 - 1) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 - 1) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 + \partial) (-1 - 1) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 + \partial) (-1 - 1) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 + \partial) (-1 - 1) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 + \partial) (-1 - 1) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 + \partial) (-1 - 1) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 + \partial) (-1 - 1) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 + \partial) (-1 - 1) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 + \partial) (-1 - 1) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 + \partial) (-1 - 1) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 + \partial) (-1 - 1) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 + \partial) (-1 + \partial) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 + \partial) (-1 + \partial) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 + \partial) (-1 + \partial) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-1 + \partial) (-1 + \partial) (-1 - 3) \\
& -\partial &= \alpha \left(1 - 1 + \partial \right) (-1 + \partial) (-$

Class/Homework for Section 2.3

READ ex 3, 4, 5 on Pg 141 - 144 Pg. 146 - 148 #1, 2, 4, 6, 8ab, 10, 12, 13b

43

2.4a Dividing a Polynomial by a Polynomial

(*The Hunt for Factors*)

Note: In this course we will almost always be dividing a polynomial by amenand linear divisor Before embarking, we should consider some "basic" terms (and notation): the stur the thing te you are $\frac{\text{dividend}}{\text{divisor}} = \text{quotient} + \frac{\text{remainder}}{\text{divisor}}$ the thing you the "answer are Jividing by Dividend = (quotient) (divisor) + remainder The division statement. Note: The Divisor and the Quotient will both be IF

Example 2.4.1

Use **LONG DIVISION** for the following division problem:

$$\frac{5x^{4}+3x^{3}-2x^{2}+6x-7}{x-2}$$
Please read Example 1 (Part A) on
Pgs. 162 - 163 in your textbook.
Please read Example 1 (Part A) on
Pgs. 162 - 163 in your textbook.
(x) $(5x^{3}) = 5x^{4}$
(x) $(13x^{2}) = 13x^{3}$
(x) $(24x) = 24x^{2}$
(x) $(24x) = 24x^{2}$
(x) $(54) = 54x^{2}$
(x) $(5$

KEY OBSERVATION:

•

Example 2.4.2
Using Long Division, divide
$$\frac{2x^3 + 3x^3 - 4x - 1}{x^{-1}}$$
.
 $\begin{array}{c} \lambda_x^{4} + 2x^3 + 5x^2 + 5x + 1\\ \lambda_x^{5} + 0x^{4} + 3x^{3} + 0x^{3} - 4x - 1\\ -\frac{(2x^{5} - 2x^{4})}{2x^{5} + 0x^{4} + 3x^{3}} & \sqrt{x^{-1}}\\ -\frac{(2x^{5} - 2x^{4})}{2x^{5} + 0x^{4}} & \sqrt{x^{-1}}\\ -\frac{(2x^{5} - 2x^{3})}{5x^{3} + 0x^{4}} & \sqrt{x^{-1}}\\ -\frac{(5x^{2} - 5x)}{5x^{2} - 4x} & \sqrt{x^{-1}}\\ -\frac{(x^{-1})}{0} & \sqrt{x^{-1}}\\ \end{array}$

$$\therefore 2x^{2} + 3x^{2} - 4x - 1 = (x - 1)(2x^{2} + 2x^{2} + 5x + 1)$$

KEY OBSERVATION:

Classwork: Pg. 169 #5 (Yep, that's it for today)

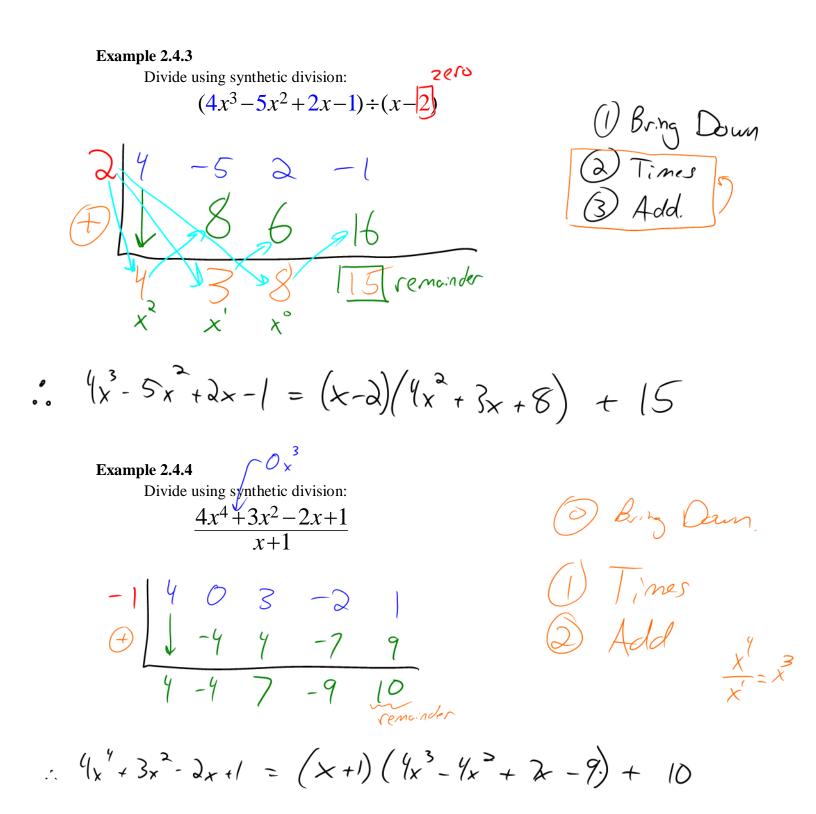
2.4b Dividing a Polynomial by a Polynomial

(The Hunt for Factors – Part 2)

Here we will examine an alternative form of polynomial division called **Synthetic Division**. Don't be fooled! This is not "fake division". You're thinking with the wrong meaning for "synthetic". (Do a search online and see if you can come up with the meaning I am taking!)

In Synthetic Division we concern ourselves with the coefficients of the dividend and the zero of the divisor. Synthetic Division uses numbers, no variables, and three operations. -> bring down, times, and add. Note: Synthetic division only uses Imear divisors ex: 2x-5, x+3,

The Set-up



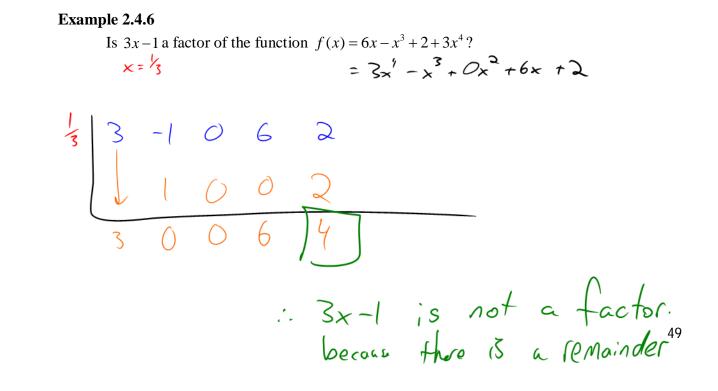
Example 2.4.5

Divide using your choice of method (and you choose synthetic division...amen) $(2r^3 - 9r^2 + r + 12) \div (2r - 3)$

$$3_{2} = 3x + x + 12) + (2x - 3)$$

$$3_{2} = 2 - 9 - 1 - 12$$
when you have
$$3 - 9 - 12$$
divide the
$$2 - 6 - 8 = 0$$
the
$$1 - 3 - 9$$
Jenominator

$$= (2x - 3)(x - 4)(x + 1) = (2x - 3)(x - 3x - 4) = (2x - 3)(x - 4)(x + 1)$$



Example 2.4.7 (OK...this is a lot of examples!)

Consider again (from Example 2.4.6) $f(x) = 3x^4 - x^3 + 6x + 2$, and calculate $f\left(\frac{1}{3}\right)$. $f\left(\frac{1}{3}\right) = \left(\frac{1}{3}\right)^9 - \left(\frac{1}{3}\right)^3 + 6\left(\frac{1}{3}\right) + 2$ $= \left(\frac{1}{810}\right)^9 - \frac{1}{27} + 2 + 2$ $= \frac{4}{2}$ Wait III This is the SAME (Mainter the dividing by 3x - 1.2) Example 2.4.8 Consider Example 2.4.5. Let $g(x) = 2x^3 - 9x^2 + x + 12$, and calculate $g\left(\frac{3}{2}\right)$. $q\left(\frac{3}{2}\right) = \left(\frac{3}{2}\right)^3 - \left(\frac{3}{2}\right)^2 + \frac{3}{2} + 12$

$$= \frac{2}{4} \left(\frac{a7}{48} \right) - \frac{9}{49} \left(\frac{a}{4} \right) + \frac{3}{2} + \frac{1}{4} \\ = \frac{a7}{4} - \frac{81}{4} + \frac{6}{4} + \frac{98}{4} = \frac{0}{4} = 0$$

The Remainder Theorem

Given a polynomial function, f(x), divided by a linear binomial, x-k, then the remainder of the division is the value f(k).

Proof of the Remainder Theorem

Consider
$$f(x) \div (x - k)$$

then the division statement is: guotient
 $f(x) = (x - k) \cdot g(x) + r$
Now, $f(k) = (k - k) \cdot g(x) + r$
 $f(k) = r$

Example 2.4.9
Determine the remainder of
$$\frac{5x^4 - 3x^3 - 50}{x - 2}$$
 (WAITIIII We MUST have a FUNCTION

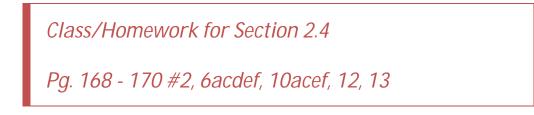
$$f(2) = 5(2)^4 - 3(2)^3 - 50$$

$$= 80 - 24 - 50$$

$$= 6$$

$$= 6$$

$$= 6$$



2.5 The Factor Theorem

(Factors have been FOUND)

The Factor Theorem Given a polynomial function, f(x), then x-a is a factor of f(x) if and only if f(x) = 0

Example 2.5.1 Use the Factor Theorem to factor $x^{3} + 2x^{2} - 5x - 6$. $f(x) = x^{3} + 2x^{2} - 5x - 6$ $T(x) = x^{3} + 2x^{2} - 5x - 6$ $T(x) = x^{3} + 2x^{2} - 5x - 6$ f(x) = (x - a)(x - b)(x - c) f(x) = (x - a)(x - b)(x - b)(x - c) f(x) = (x - a)(x - b)(x - b)(x - c) f(x) = (x - a)(x - b)(x - b)(x - c) f(x) = (x - a)(x - b)(x - b)(x - c)f(x) = (x - a)(x - b)(x - b)(Example 2.5.2 Factor fully $x^4 - x^3 - 16x^2 + 4x + 48$ $II, \pm 2, \pm 3, \pm 9, \pm 6, \pm 8, \pm 72, \pm 76, \pm 29, \pm 798$

$$\begin{aligned} f(y \ x+2, \ x=-2 \\ f(-2) &= (-2)^{9} - (-2)^{3} - 16(-2)^{2} + 9(-2) + 98 \\ &= 16 + 8 - 69 - 8 + 98 \\ &= 0 \end{aligned} \qquad \begin{array}{c} -2 & 6 & 20 - 98 \\ -2 & 6 & 20 - 98 \\ \hline & -3 & -10 & 29 & 0 \\ \hline & -3 & -10 & 29 & 0 \\ \hline & -x^{3} - 3x^{2} - 10x + 29 = g60 \\ \hline & -x^{3} - 3x^{3} - 10x + 29 = g60 \\ \hline & -x^{3} - 3x^{3} - 10x + 29 = g60 \\ \hline & -x^{3} - 3x^{3} - 10x + 29 = g60 \\ \hline & -x^{3} - 3x^{3} - 10x + 29 = g60 \\ \hline & -x^{3} - 3x^{3} - 10x + 29 \\ \hline & -x^{3} - 3x^{3} - 10x + 29 \\ \hline & -x^{3} - 3x^{3} - 10x + 29 \\ \hline & -x^{3} - 3x^{3} - 10x + 29 \\ \hline & -x^{3} - 3x^{3} - 10x + 29 \\ \hline & -x^{3} - 3x^{3} - 10x + 29 \\ \hline & -x^{3} - 3x^{3} - 10x + 29 \\ \hline & -x^{3} - 3x^{3} - 10x + 29 \\ \hline & -x^{3} - 10$$

$$\therefore x^{4} - x^{2} - 16x^{2} + 1/x + 1/8 = (x - 2)(x + 2)(x^{2} - x - 12)$$
$$= (x - 2)(x + 2)(x - 4)(x + 3)$$

Example 2.5.3 (Pg 177 #6c in your text)
Factor fully
$$x^{1} + 8x^{3} + 4x^{2} - 48x$$

 $5(x) = X(x^{3} + 8x^{2} + (x - 4)^{2})$
 $5(x)$
 $1ry \times -R, f(2) = 2^{3} + 8(2)^{2} + 1/2 - 48x$
 $= 8 + 32 + 8 - 48 = 0.1$
 $2 + 8 + 32 + 8 - 48 = 0.1$
 $2 + 8 + 32 + 8 - 48 = 0.1$
 $2 + 8 + 32 + 8 - 48 = 0.1$
 $2 + 8 + 32 + 8 - 48 = 0.1$
 $2 + 8 + 32 + 8 - 48 = 0.1$
 $2 + 8 + 32 + 8 - 48 = 0.1$
 $2 + 8 + 32 + 8 - 48 = 0.1$
 $2 + 8 + 32 + 8 - 48 = 0.1$
 $2 + 8 + 32 + 8 - 48 = 0.1$
 $2 + 8 + 32 + 8 - 48 = 0.1$
 $2 + 8 + 32 + 8 - 48 = 0.1$
 $3 + 8 + 48 + 48 = 0.1$
 $4(x - 2)(x^{2} + 10x + 24)(x + 6)$
Example 2.5.4 (Pg 177 #10)
 $4(x) = -(x + 4)(x + 6)$
Example 2.5.4 (Pg 177 #10)
 $4(x) = -(x + 4)(x + 6)$
 $5(x) = -x^{2} + 2x + 6 = 10$
 $3 + 6 = 10$
 $4 + 6 = 10$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 51$
 $4 + 6 = 5$

Class/Homework for Section 2.5 Pg. 176 - 177 #1, 2, 5 – 7 abcd, 8ac, 9, 12 (angels sing over 9 & 12)

2.6 Factoring Sums and Differences of Cubes

patternspatter

Knowing how to factor a sum or difference of cubes is a simple matter of remembering patterns.

Example 2.6.1 (Recalling the pattern for factoring a Difference of Squares) Factor $4x^2 - 25$ $= \left(2 \times -5\right)\left(2 \times +5\right)$ Note: Sums of Squares DO NOT factor!! e.g. Simplify $x^2 + 4$ $= \left(2 \mu \rho s^{5} + 27\right)$ Differences of Cubes Pattern Same $Q \rho p s^{5} + e$ $A | w r s^{5} + 27$ Differences of Cubes Pattern Same $Q \rho p s^{5} + e$ $A | w r s^{5} + 27$ Differences of CubesPattern Same $Q \rho s^{5} + e$ $A | w r s^{5} + 27$ Sums of Cubes (These DO factor!!)

Pattern

 $(cube_{1} + cube_{2}) = (cuberoot_{1} + cuberoot_{2})(cuberoot_{1}^{2} - cuberoot_{1} \times cuberoot_{2}^{2})$ $\Re^{3} \neq \Im 7 = (\Im^{2} + \Im) (\Im^{2} - G^{2} + \Im^{2})$

$$2 | 1 \circ 0 - 8$$

$$2 - 8 = (x - 2)(x^{2} + 2x + 4)$$

Factor $|x^{3} - 8 = (x - 2)(x^{2} + 2x + 4)$

Example 2.6.3
Factor
$$27x^3 + 125y^3 = (3x + 5y)(9x^2 - 15xy + 25y^2)$$

 $(3x)(5y)$

Example 2.6.4
Factor
$$1 - 64z^3 = (1 - 4z)(1 + 4z + 16z^2)$$

Example 2.6.5 Factor $1000x^3 + 27$ $= (10x + 3)(100x^{2} - 30x + 9) (10x)(3)(3)^{2}$ 27 (1/3)

Example 2.6.6

 $\frac{\sqrt{3}}{2} \left(\frac{6}{2} \right)^{\frac{1}{3}}$ ~ ~ ~

Factor
$$x^{6} - 729$$

$$= (x^{2} - 9) (x^{9} + 9x^{2} + 81)$$

$$(x^{9})^{2} (x^{3})^{9} (9)^{2}$$

$$= (x - 3)(x + 3)(x^{9} + 9x^{2} + 81)$$

Class/Homework for Section 2.6

Pg 182 #2aei, 3, 4 If you finish early, begin the review Pgs. 184 – 185 (skip #8, 9)