Advanced Functions

Fall 2017 Course Notes

Chapter 3 – Polynomial Equations and Inequalities

We will learn

- how to find solutions to polynomial equations using tech and using algebraic techniques
- how to solve polynomial inequalities with and without tech
- how to apply the techniques and concepts to solve problems in volving polynomial models

Chapter 3 – Polynomial Equations and Inequalities

Contents with suggested problems from the Nelson Textbook (Chapter 4)

- **3.1 Solving Polynomial Equations** *Pg* **57 61** Pg. 204 – 206 #1, 2, 6 – 8, 10 – 12, 14, 15
- **3.2 Linear Inequalities** *Pg 63 66* Pg. 213 – 215 #1, 2, 4, 5, 7, 9, 13
- **3.3 Solving Polynomial Inequalities Pg 67 70** Pg. 225 – 228 #2, 5 – 7, 10 – 13

Thus Work Period.

TBA

Tues

Combine with unit 4

3.1 Solving Polynomial Equations

Before embarking on this wonderful journey, it seems to me that it would be prudent to make some (seemingly silly) opening statements.

Seemingly Silly Opening Statements

- 1) Polynomial equations ARE NOT polynomial functions!
- 2) Solving any equation **MEANS** finding a **SOLUTION** (if a solution exists)!
- 3) Solving a polynomial equation is ALWAYS equivalent to finding the zeros of some polynomial function!

Example 3.1.1 (back to Grade 9)

Solve the linear equation

$$3(x-5)+2=5x+6$$

$$3x-15+2=5x+6$$

$$3x-13=5x+6$$

$$-19=2x$$

$$x=-\frac{19}{2}$$

Example 3.1.2 (*remember grade 11?*) • (0)? Solve the quadratic equation

$$5x(x-1)+7=2x^{2}+9$$

$$5x^{2}-5x+7=(2x^{2}+9)$$

$$3x^{2}-5x-2=0$$

$$(x)-6, 1$$

$$3x^{2}-6x+1x-2=0$$

$$(3x+1)(x-2)=0$$

$$x = -\frac{1}{3}$$
and $x = 2$
57

Geometrically speaking, solving a quadratic **equation** is equivalent to finding the zeros of a quadratic **function**.

Solving the **equation** in **Example 3.1.2** means the same thing as finding the zeros of the **function**

Comments about Higher Order Polynomial Equations

Consider the cubic **EQUATION** $x^3 + 2x^2 - 5 + 1 = 0$. Q. How many zeros can this equation have? Ans.

Consider the quartic equation $4x^4 - 3x^3 + 5x^2 - 3x + 1 = 0$. Q. How many zeros can this equation have? Ans.

Example 3.1.3

Solve the polynomial equation by factoring:

$$4x^{3}-3x=1$$

 $5(x) = \frac{4}{x}^{3} - 3x - \frac{1}{x} = 0$

 $Tr_{y} f(1) = \frac{y(1)^{2} - 3(1) - 1}{z - 2} = 0$: x - 1 is a factor!

Note: Solving Polynomial Equations requires writing the equation in **Standard Form**, which is: "polynomial = 0"

Example 3.1.4
Solve the equation by factoring:

$$12x^4 + 16x^3 - 11x = 13x^2 - 6$$

 $f(y) = (\Im_x^4 + 16x^3 - 13x^2 - 11x + 16 = 0)$
 $f(-1) = [\Im_x - 1/6 - 1]^3 - 13(-1)^2 - 11(-1) + 6$
 $= [\Im_x - 1/6 - 1]^3 + 11 + 6 = 0!$ $(x + 1)$ is a factor
 $f(1) = 16 - 13 - 11 - 6$
 $f(x + 1)(1\Im_x^3 + 4x^2 - 17x + 6)$
 $Let g(x) = 1\Im_x^3 + 4x^2 - 17x + 6)$
 $Let g(x) = 1\Im_x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6)$
 $f(x + 1) = 10x^3 + 4x^2 - 17x + 6$

Back to Example 3.1.4

For $g(x) = 12x^3 + 4x^2 - 17x + 6$ the possible rational zeros are:

$$\begin{aligned}
g(\frac{1}{2}) &= 12\left(\frac{1}{2}\right)^{2} + \frac{1}{2}\left(\frac{1}{2}\right)^{2} - \frac{17}{2} + \frac{6}{12} \\
&= \frac{3}{2} + \frac{2}{2} - \frac{17}{2} + \frac{12}{2} = 0 \quad !! \quad :: \quad (2x-1) \text{ is a factor} \\
12 \quad 4 \quad -17 \quad 6 \\
\frac{12}{6} \quad \frac{6}{5} \quad \frac{5}{-6} \\
&: \quad (2x-1)\left(6x^{2} + 5x - 6\right) \quad \notin \quad 5 \\
&= \frac{12}{3}, x = \frac{3}{3}, x = \frac{3}{3}
\end{aligned}$$

3

11, 13 1, 12 Example 3.1.5 t() t 2 Solve the equation $3x^3 - 4x + 2 = 0$. $g(-1) = 3(-1)^3 - 4(-1) + 2$ As if turns out! = -3 +1/+2 f(=1) ×0 = 6 $f(t) \neq 0$ $f(\frac{1}{3}) \neq 0$ $f(\pm 2) \neq 0$: f(x) does not factor! However, this is a cubic fa and Must have at least one solution X = -1.352 by graphing.

Class/Homework for Section 3.1

Pg. 204 – 206 #1, 2, 6 – 8, 10 – 12, 14, 15 Note: for #14a) you may need to ask about "domain restrictions"

), 2, 4, 4

Once again, it seems a good idea to begin with a couple of opening statements.

Absolutely Non-Silly Opening Statements

1) The **algebra** of inequalities is the **SAME** as the algebra on equality (i.e. solving equations), with two exceptions:

a) If you multiply or divide by a negative, then You must switch the direction

of the inequality, b) We can have 2 sided inequalities - e.g.

3 ≤ x ≤ 5 or -3>x>8

2) The Solution Set of inequalities is in finite.

Example 3.2.1

Solve the (linear) inequality 3x-2>4.

3x>6

ところ

() Grephing:

Set Nototin:
{×ER | × >2}

3) Interval Notation $\times \in (2, \infty)$

Do the "noth" everywhere.

Example 3.2.2 5 - 5 - 5Solve the two sided inequality $-2 > -4x + 5 \ge -3$.

Example 3.2.3 Solve $5 \le 3(x-2) - 4(x+3) \le 12$ $5 \le 3x - 6 - 9x - 12 \le 12$ $5 \le 3x - 6 - 9x - 12 \le 12$ $5 \le -x - 18 \le 12^{1/8}$ $23 \le -x - 18 \le 12^{1/8}$ $23 \le -x \le 30$ $-30 \le x \le -30$ $-30 \le x \le -23$

Example 3.2.4

Interval: $x \in (-\infty, -4) \cup [3, \infty)$

Graphical Views of (non-linear) Polynomial Inequalities

(the Algebra is tough...)

Example 3.2.5

Example 3.2.6

Consider the sketch of the quartic g(x), and determine where

Class/Homework for Section 3.2

Pg. 213 – 215 #1, 2, 4, 5, 7, 9, 13

3.3 Solving Polynomial Inequalities

For this section, no opening statements are required....

Non-Required Opening Statement

Solving non-linear polynomial inequalities can be accomplished in two ways:

- 1) Graphically (sometimes called Geometrically)
- 2) Algebraically (which tends to be more useful)

Example 3.3.1

Example 3.3.1 (Continued) Solve $(2x-1)(x-2)(x+3) \ge 0$ Algebraically

For this technique we will construct an "**Interval Chart**", which can also be thought of as a "**table of signs**" (and wonders?)

Note: It is often helpful to remember that in mathematics we are dealing with **NUMBERS**.

Numbers have signs: Positive or Negative

e.g. (x-2) is a **NUMBER** whose sign switches from +'ve to -'ve at x = 2(*i.e. the sign switches at the zero of the factor*)

The Interval Chart looks like:

	Intervals		Split the Domain $(-\infty,\infty)$ at all ZEROS of the Factors					
-	Те	est Values	Choose a Domain		value inside each		Interval	
-	Sign	on 1 st Factor	+					
-	Sign	on 2 nd Factor	+					
-	Sign on 3 rd Factor							the
	Factors			Find the Intervals		with the sign we		
					-3			2
For our problem above, our chart will look like: x = 3, $x = 3$, $x = 3$								
Inte	ervals	$\left(-\infty, -3\right)$	(-3, 1/2)	$(\frac{1}{2}, 2)$	$(2, \infty)$			
Test 1	athes	-4	0		3			
Xt	3	[]	+	+	+			
2×	-1		—	+	+			
X	-2		_	—	+			
Proo	lact		-(-		(
$\therefore X \in \left[-3, \frac{1}{2} \right] \cup \left[2, \infty \right)^{67}$								

±1, ±2, ±3, ±6, ±9, ±18

Example 3.3.2
Solve algebraically
$$4x^{4} + 16x^{3} + x^{2} - 39x - 18 < 0$$
.
Let $f(x) = \frac{1}{7}x^{\frac{1}{7}} + \frac{1}{6}x^{\frac{3}{7}} + x^{\frac{2}{7}} - 39x - 18$
Try $f(-1) = \frac{1}{7}(-1)^{\frac{1}{7}} + \frac{1}{6}(-1)^{\frac{3}{7}} + \frac{1}{7}(-1)^{\frac{2}{7}} - 39(-1) - 18$
 $= \frac{1}{7} - \frac{1}{6}(-1)^{\frac{1}{7}} + \frac{1}{6}(-1)^{\frac{3}{7}} + \frac{1}{7}(-1)^{\frac{2}{7}} - 39(-1) - 18$
 $= \frac{1}{7} - \frac{1}{6}(-1)^{\frac{1}{7}} + \frac{1}{6}(-1)^{\frac{3}{7}} + \frac{1}{7}(-2)^{\frac{2}{7}} - \frac{3}{7}(-2) - 18$
 $= \frac{1}{7} - \frac{1}{7}(-2) = \frac{1}{7}(-2)^{\frac{1}{7}} + \frac{1}{7}(-2)^{\frac{2}{7}} - \frac{1}{7}(-2)^{\frac{2}{7}}$

" "x" + 16x 3 + x - 39x - 18 20 when $x \in (-3, -2) \cup (-1, \frac{3}{2})$

Class/Homework for Section 3.3 Pg. 225 – 228 #2, 5 – 7, 10 – 13