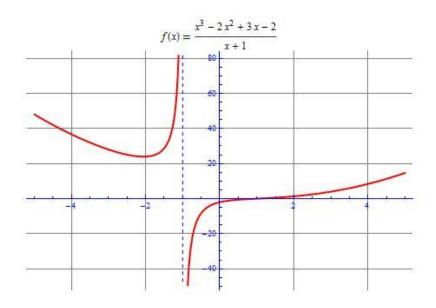
Advanced Functions

Fall 2017 Course Notes

Unit 4 – Rational Functions, Equations and Inequalities

We will learn

- how to sketch the graphs of simple rational functions
- how to solve rational equations and inequalities with and without tech
- how to apply the techniques and concepts to solve problems involving rational models



Chapter 4 – Rational Functions, Equations and Inequalities

Contents with suggested problems from the Nelson Textbook (Chapter 5)

4.1 Introduction to Rational Functions and Asymptotes

Pg. 262 #1 - 3

4.2 Graphs of Rational Functions

Pg. 272 #1, 2 (Don't use any tables of values!), 4 - 6, 9, 10

4.4 Solving Rational Equations

Pg. 285 - 287 #2, 5 - 7def, 9, 12, 13

4.5 Solving Rational Inequalities
Pg. 295 - 297 #1, 3, 4 - 6 (def), 9, 11

Techniques

Test October 19, 2017 (Thursday).

4.1 Rational Functions, Domain and Asymptotes

Definition 4.1.1

A **Rational Function** is of the form

$$f(x) = \frac{p(x)}{g(x)}$$
, $g(x) \neq 0$ and both $p(x)$ and $g(x)$ are polynomials.

e.g.
$$f(x) = \frac{3x^2 - 5x + 1}{2x - 1}$$
 is a rational $f(x) = \frac{3x^2 - 5x + 1}{2x - 1}$

$$g(x) = \frac{\sqrt{2x+5}}{3x-2}$$
 not rational for because $\sqrt{2x+5}$ is

Domain

Definition 4.1.2

Given a rational function $f(x) = \frac{p(x)}{q(x)}$, then the **natural domain** of f(x) is given by

$$O_{S} = \{x \in \mathbb{R} \mid g(x) \neq 0\}$$
The zero of $g(x)$

Example 4.1.1

Determine the natural domain of $f(x) = \frac{x^2 - 4}{x - 3}$.

$$D_{f}: \{x \in \mathbb{R} \mid x \neq 3\}$$

$$X \in (-\infty, 3) \cup (3, \infty)$$

Asymptotes

There are 3 possible types of **asymptotes**:

1) Vertical Asymptotes

A vertical line with equation x = #

2) Horizontal Asymptotes

equation is y=#

3) Oblique Asymptotes

equotion is y=mx+b

Vertical Asymptotes

A rational function $f(x) = \frac{p(x)}{q(x)}$ MIGHT have a V.A. when q(x) = 0, but there may be a hole discontinuity instead. A quick bit of algebra will dispense the mystery.

Example 4.1.2

Determine the domain, and V.A., or hole discontinuities for:

$$a) f(x) = \underbrace{\frac{5x}{x^2 - x - 6}}$$

$$f(x) = \frac{5x}{(x-3)(x+2)}$$
 These factor stay : U.A.
$$D_f = \left\{ x \in \mathbb{R} \mid x \neq -2, x \neq 3 \right\}$$

$$\times \in (-\infty, -2) \cup (-2, 3) \cup (3, \infty)$$

b)
$$h(x) = \frac{x+3}{x^2-9}$$

$$h(x) = \frac{x+3}{(x+3)(x-3)}$$

$$h(x) = \frac{1}{(x-3)}$$

Hole at
$$x = -3$$
 because it disappeared.

$$D_{1} = \left\{ x \in \mathbb{R} \middle| x \neq -3, x \neq 3 \right\}$$

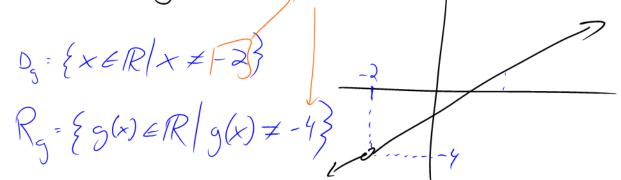
c)
$$g(x) = \frac{x^2 - 4}{x + 2}$$

$$g(x) = \frac{(x+2)(x-2)}{x+2}$$

$$q(x) = x - \lambda$$

FACTOR EVERYALLIA

$$x = -\lambda$$
 is a hole.



Horizontal Asymptotes

Here we are concerned with END BEHAVIORS of the rational for

i.e. We are asking, given a rational function $f(x) = \frac{p(x)}{q(x)}$, how is f(x) behaving as $x \to \pm \infty$.

Now, since p(x) and q(x) are both polynomials, they have an order (degree). We must consider three possible situations regarding their order:

1) Order of p(x) >Order of q(x)

$$R(x) = \frac{x^{3}-2}{x^{3}} - \frac{2}{x^{3}} = \frac{1-\frac{2}{x^{3}}}{\frac{x^{3}}{x^{3}} + \frac{1}{x^{3}}} = \frac{1-\frac{2}{x^{3}}}{\frac{2}{x^{3}} + \frac{1}{x^{3}}} = \frac{1-\frac{2}{x^{3}}}{\frac{2}{x^{3}}} = \frac{1-\frac{2}{x^{3}}}{\frac{$$

2) Order of numerator = Order of denominator

e.g.
$$f(x) = \frac{2x^2 - 3x + 1}{3x^2 + 4x - 5}$$

$$f(x) = \frac{2x^{2}}{x^{2}} - \frac{3x^{2}}{x^{2}} + \frac{1}{x^{2}} = \frac{2 - 0 + 0}{3 + 0 - 0} = \frac{2}{3}$$

$$\frac{3x^{2}}{x^{2}} + \frac{4x^{2}}{x^{2}} - \frac{5}{x^{2}} = \frac{3 + 0 - 0}{3 + 0 - 0} = \frac{2}{3}$$
the H.A.

e.g. Determine the horizontal asymptote of
$$g(x) = \frac{3x - 4x^5}{5x^5 + 2x - 1}$$

: H.A. is
$$y = \frac{-4}{5}$$

3) Order of numerator p(x) < Order of denominator q(x)

$$f(x) = \frac{x^{2} - 5x + 6}{x^{5} + 7}$$

$$f(x) = \frac{x^{3} - 5x + 6}{x^{5} + 7} = \frac{x^{5} + 7}{x^{5}} = \frac{x^{5} +$$

Oblique Asymptotes

These occur when the order of the top is exactly one greater than the order of the bottom.

e.g.
$$f(x) = \frac{x^2 - 2x + 3}{x - 1}$$
 and order $\frac{x^2 - 2x + 3}{x - 1}$ and $\frac{x^2 - 2x + 3}{x - 1}$

With Oblique Asymptotes we are still dealing with end behaviors.

O.A. have the form y = mx + b (shocking, I know!) The question we have to face is this:

How do we find the line representing the O.A.?

Ans: By polynomial division!

The O.A. is the quotient.

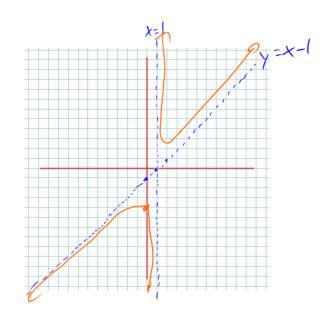
$$f(x) = \frac{x^2 - 2x + 3}{x - 1}$$

$$\frac{1}{x} = \frac{1}{x} = \frac{1}{$$

(Rough) Sketch of
$$f(x) = \frac{x^2 - 2x + 3}{x - 1}$$

V.A.
$$\times =$$

O.A.
$$y = x - /$$



Example 4.1.3

Determine the equations of all asymptotes, and any hole discontinuities for:

a)
$$f(x) = \frac{x+2}{x^2+3x+2}$$
 order $\frac{1}{2}$

$$f(x) = \frac{x+2}{(x+1)(x+2)}$$

$$f(x) = \frac{1}{x+1}$$

a)
$$f(x) = \frac{x+2}{x^2+3x+2}$$
 order ∂

$$f(x) = \frac{x+2}{x^2+3x+2}$$

$$(x+1)(x+2)$$

$$(x+$$

b)
$$g(x) = \frac{4x^2 - 25}{1x^2 - 9}$$

$$g(x) = \frac{(2x-5)(2x+5)}{(x+3)(x-3)}$$

$$V.A.$$
 $X=3, x=-3$

Hole $V.A.$
 $V.A.$ $Y=4$
 $V.A.$ $Y=4$

$$c) h(x) = \frac{x^2 + 0x + 0}{x + 3}$$

$$-3 \quad | \quad 0 \quad 0$$

$$-3 \quad 9$$

$$| \quad x - 3 \quad 9$$

$$V.A.$$
 $X=-3$

Hole $N.A.$
 $H.A.$ $N.A.$
 $O.A.$ $y=x-3$

Example 4.1.4

Determine an equation for a function with a vertical asymptote at x = -3 and a horizontal asymptote at y = 0.

bottom is bigger

$$f(x) = \frac{8}{x+3}$$
or
$$f(x) = \frac{3x^2 - 2x + (6000)}{(x+3)(x-8)(x+5)}$$

Example 4.1.5

Determine an equation for a function with a hole discontinuity at x = 3.

$$f(x) = \frac{(\chi - 3)(\chi^2 - 8\chi + 5)}{(\chi - 3)(\chi^2 + 8\chi - 200000)} \times -3 \text{ in top and bothom.}$$

Class/Homework for Section 4.1

Pg. 262 #1 - 3

4.2 Graphs of Rational Functions

Note: In Advanced Functions we will only consider rational functions of the form

$$f(x) = \frac{ax + b}{cx + d}$$

Rational Functions of the form $f(x) = \frac{ax+b}{cx+d}$ will have:

1) One Vertical Asymptote

$$Cx + d = 0$$

 $X = \frac{-d}{c}$, unless $C = 0$

2) One Zero (unless $\alpha = 0$, no zero)

$$L_0 O = \frac{ax+b}{ax+b} \rightarrow x = \frac{-b}{a}$$

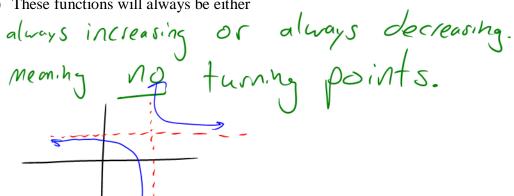
3) Functional Intercept

$$f(0) = \frac{a(0) + b}{c(0) + d} = \frac{b}{d} \Longrightarrow \left(0, \frac{b}{d}\right)$$

4) A Horizontal Asymptote

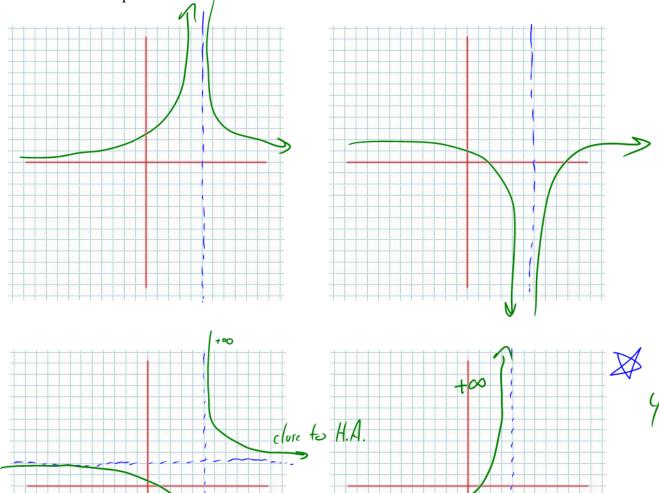
$$y = \frac{\alpha}{c}$$
unless $\alpha = 0$, then the H.A is $y = 0$.

5) These functions will always be either



Functional Behaviour Near A Vertical Asymptote

There are **FOUR** possible functional behaviours near a V.A.:

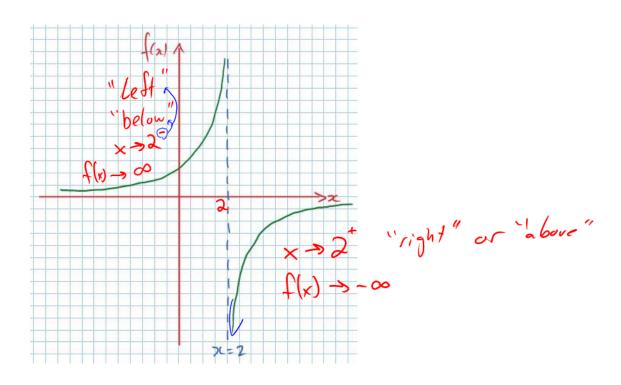


For functions of the form $f(x) = \frac{ax+b}{cx+d}$ we will see behaviours like 3 and 7

The questions is, how do we know which?

We need to analyze the function near the V.A. We need to become familiar with some **Notation**.

Consider some rational function with a sketch of its graph which looks like:



Example 4.2.1

Determine the functional behaviour of $f(x) = \frac{2x+1}{x-3}$ near its V.A.

 V_{iA} is x = 3

$$x = 2.99$$
, $f(2.99) = -698$
80 $f(2.999) = -6998$
 $\therefore getting smaller$

$$\chi \to 3^{\dagger}$$

$$f(x) \to +\infty$$

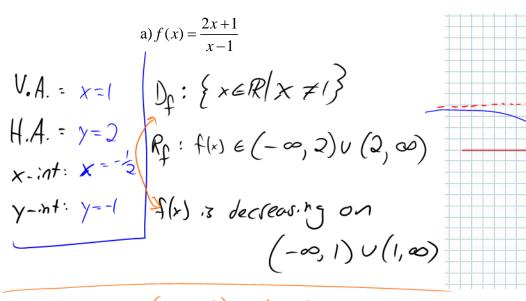
Pick a number seally close to Pick a number above 3 and close to 3. x = 3.001, f(x) = 7002- getting bigger.

We now have the tools to sketch some graphs!

Example 4.2.2

Sketch the graph of the given function. State the domain, range, intervals of

increase/decrease and where the function is positive and negative.



$$f(x) < 0$$
 on $\left(-\frac{1}{2}\right)$

b)
$$g(x) = \frac{3x-2}{2x+5}$$

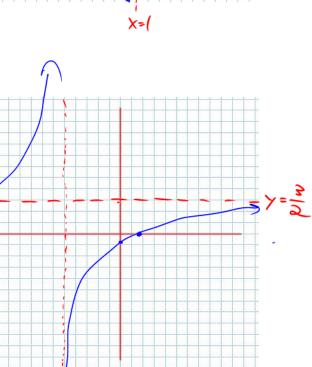
$$V.A = x = \frac{-5}{2}$$

$$x-int: x=\frac{2}{3}$$

$$y-int: Y=\frac{2}{3}$$

$$(-\infty, \frac{\pi}{3}) \cup (\frac{\pi}{3}, \infty)$$

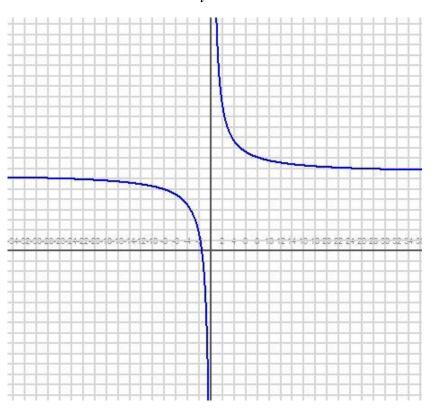
$$g(x) > 0$$
 on $(-\infty, \frac{5}{2}) \cup (\frac{2}{3}, \infty)$
 $g(x) < 0$ on $(-\frac{5}{3}, \frac{2}{3})$



Example 4.2.3

Consider question #9 on page 274:

$$I(t) = \frac{15t + 25}{t}$$



Class/Homework for Section 4.2

Pg. 272 #1, 2 (Don't use any tables of values!), 4 – 6, 9, 10

4.4 Solving Rational Equations

Solving a Rational Equation is **VERY MUCH** like solving a Polynomial Equation. Thus, this stuff is so much fun it should be illegal. But it isn't illegal unless you break a rule of algebra. Math Safe!

KEY (this is a major key for you music buffs)

Multiplying by the Multiplicative Inverse of the Common Denominator is wonderful to use WHEN YOU HAVE something like:

 $RATIONAL_1 + RATIONAL_2 = RATIONAL_3$

e.g.
$$\frac{3}{x-2} = \frac{4(x+5)}{x} + \frac{3}{2}$$
 C.D. is $2x(x-2)$

$$2x(x-2)\left(\frac{3}{x^2}\right) = 2x(x-2)\left(\frac{4(x+5)}{x}\right) + 2x(x-2)\left(\frac{3}{2}\right)$$

$$6x = 8(x-2)(x+5) + 3x(x-2)$$

Make Sure To Keep RESTRICTIONS ON X In Mind

> Means that sestrictions cannot be solutions.

Example 4.4.1

a) Solve
$$\frac{x}{5} = \frac{9}{18}$$

RESTRICTIONS

 $x \neq 0 \mid C_0 D_0$ (x)(3)(5) = 15x

$$x = \frac{5}{2}$$

b) Solve
$$\sqrt{\frac{1}{x} - \frac{5x}{3}} = \frac{2}{5}$$

$$15 - 25x = 6x$$

$$x = \frac{-6 + \int_{0}^{2} \frac{3^{2} - 4(25)(-15)}{2(25)}$$

Ework > show this work

c) Solve
$$\left(\frac{3}{x} + \frac{4}{x+1} = \frac{2}{1}\right)$$

RESTRICTIONS

$$x \neq -1,0$$
 $X(x + 1)$

$$3(x+1) + 4x = 2x(x+1)$$

$$3x + 3 + 4x = 2x^{2} + 2x$$

$$0 = 2x^{2} - 5x - 3 \quad \textcircled{6}^{-6} - 6, +1$$

$$0 = 2x^2 - 6x + 1x - 3$$
 $x = \frac{1}{2}$

$$0 = (2x + 1)(x - 3) \qquad x = 3$$

d) Solve
$$\frac{10}{x^2 - 2x} + \frac{4}{x} = \frac{5}{x - 2}$$
 $\times (x - 2)$

RESTRICTIONS

$$10 + 4x - 8 = 5x$$

 $\frac{9x-8=5x}{2=x}$

 $x \neq 0, 2 \mid C.D.$ x(x-2)

Whoah! x=2 is

a restriction, ... no solutions

e) Solve
$$(16x - \frac{5}{x+2} = \frac{15}{x-2} - \frac{60}{(x-2)(x+2)})$$
 C. D. = $(x-2)(x+2)$
 $16x(x+2)(x-2) - 5(x-2) = 15(x+2) - 60$
 $16x^3 - 64x - 5x + 10 = 15x + 30 - 60$
 $16x^3 - 84x + 40 = 0$
 $16x^3 - 84x + 40 = 0$
 $16x^3 - 84x + 10 = 0$
 $16x^3 - 10 = 0$
 $16x^3$

inadmissable
$$x = \frac{1}{2}$$

$$x = -\frac{5}{2}$$

Example 4.4.2

From your Text: Pg. 285 #10

each machine take to fill a co

The Turtledove Chocolate factory has two chocolate machines. Machine A takes s minutes to fil case with chocolates, and machine B takes s + 10 minutes to fill a case. Working together, the two machines take 15 min to fill a case. Approximately how long does each machine take to fill a case?

$$A: \frac{1}{x}$$
 $B: \frac{1}{x+10}$

Together: $\left(\frac{1}{x} + \frac{1}{x+10}\right) = \frac{(15)(x)(x+10)}{(15)(x)(x+10)} Restriction: (15)(x)(x+10)$

$$0 = x^2 - 20x - 150$$

does not feeter

is by the Q.F.

: Madine A 13 25.8m.h and Machine R 13 35.8 min

Class/Homework for Section 4.4

Pg. 285 - 287 #2, 5 – 7def, 9, 12, 13

4.5 Solving Rational Inequalities

The joy, wonder and peace these bring is really quite amazing

e.g. Solve
$$\left(\frac{x-2}{7} \ge 0\right)$$
 $x-2 \ge 0$
 $x \ge 2$

what do you $x \ge 2$

plug the top to equal zero?

Solve $\frac{x-2}{x+3} \ge 0$

Zero: $x=2$ Restriction: $x=-3$

Note: For Rational Inequalities, with a variable in the denominator, you **CANNOT** multiply by the multiplicative inverse of the common denominator!!!!

Why? If the factor "x+3" is negative, cross multiplying would change the direction of the Mequality.

We solve by using an Interval Chart

For the intervals, we split $(-\infty,\infty)$ at all zeros (where the numerator is zero), and all restrictions (where the denominator is zero) of the (SINGLE) rational expression. Keep in mind that it may take a good deal of algebraic manipulation to get a SINGLE rational expression...

Intervals	$(-\infty, -3)$	(-3,2)	$(2, \infty)$	
T. V.	4	0	3	
x-2/	_	(+	
X+3	_	+	+	
Ratio	+		+	restric
•	x-2	> 0		$\left(\alpha = 3 \right) 1$

 $\frac{x-2}{x+3} \ge 0$ when $x \in (-\infty, -3) \cup [2, \infty)$

Solve
$$\frac{1}{x+5} < 5$$

$$\frac{-5\times-24}{\times+5}<0$$

DO NOT CROSS MULTIPLY or else

- Get everything on one side
- Simplify into a single Rational Expression using a common denominator
- Interval Chart it up

Zero:
$$X = \frac{-24}{5}$$
 or -4.8

Interval
$$(-\infty, -5)$$
 $(-5, -4.8)$ $(-4.8, \infty)$

T. V. -6 -4.9 O

 $-5x-24$ + +

Tatio - +

$$\frac{1}{x+5} = \frac{1}{5} = \frac{$$

Example 4.5.3

Solve
$$\frac{x^2 + 3x + 2}{x^2 - 16} \ge 0$$

FACTORED FORM IS YOUR FRIEND

$$\frac{(x+2)(x+1)}{(x-4)(x+4)} \ge 0$$

Zeros: x = -2, x = -(Restrictions: x = -4, $x \neq 4$

Intervals	(-0,-4)	(-4,-2)	(-2, -1)	(-1, 4)	$\left(\begin{pmatrix} q & \infty \end{pmatrix} \right)$
T. v.	-5	-3	-1.5	0	5
×+1	_	_	_	+	+
×+2	_		+	+	+
× -4	_		_	_	/
×+4		+	+	+	7
Ratio	(A)	~	+		(1)

$$\frac{x^{2}+3x+2}{x^{2}-16} \geq 0 \quad \text{for } x \in (-\infty, -4) \cup [-2, -1] \cup (4, \infty)$$

Solve
$$\frac{3}{x+2} \le x$$

$$\frac{3}{x+2} - \frac{x^{(x+2)}}{1(x+2)}$$

$$\frac{3-x^2-2x}{x+2} \leq 0$$

$$\frac{-1}{1}\left(\frac{-x^{2}-2\times+3}{\times+2}\right) \leq O\left(\frac{-1}{1}\right)$$

$$\frac{x^{2}+2x^{2}-3}{x+2} \geq O\left(\frac{-1}{1}\right)$$

$$\frac{x^{2}+2x^{2}-3}{x+2} \geq O\left(\frac{-1}{1}\right)$$

$$\frac{(x+3)(x-1)}{x+2} \geq 0$$

Zeros: x = -3 and x = 1Restriction: $x \neq -2$

Intervals	(-0,-3)	(-3, -2)	(-5, 1)	(1,00)	
T. V.	-4	-2.5	0	2	
×+3		t	+	†	
×-1	_		_	+	
X+Z			+	+	
Ratios		(+)		+	

$$\frac{3}{x+2} \neq x \qquad \text{for } x \neq \left[-3, -2\right) \cup \left[1, \infty\right)$$

Example 4.5.5

From your Text: Pg. 296 #6a

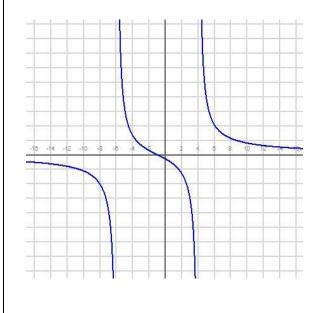
Using Graphing Tech

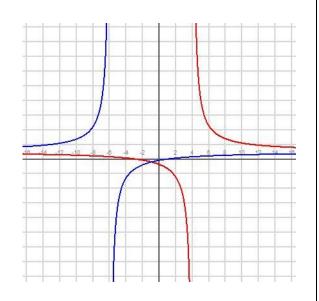
Solve
$$\frac{x+3}{x-4} \ge \frac{x-1}{x+6}$$

Note: There are **TWO** methods, both of which require a **FUNCTION** (let f(x) = ... returns)

1) Get a Single Function (on one side of the inequality)

2) Use Two Functions (one for each side)





Class/Homework for Section 4.5

Pg. 295 - 297 #1, 3, 4 – 6 (def), 9, 11