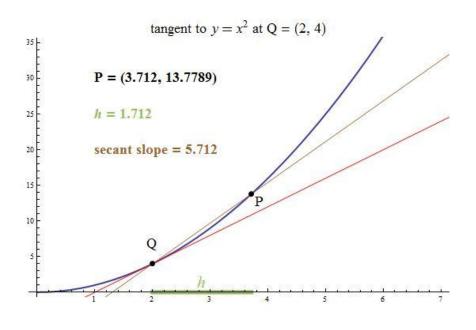
Advanced Functions

Fall 2017 Course Notes

Unit 9 – Rates of Change

We will learn

- how to calculate an average rate of change of a function, given the function as a table of values, or a sketch, or an equation
- how to estimate the instantaneous rate of change of a function
- how to interpret the meaning of the average rate of change of a function over an interval of the function's domain
- how to interpret the meaning of the instantaneous rate of a change of a function at a single value of the domain.
- how to solve problems using rates of change



Chapter 9 – Rates of Change and the Tangent Problem

Contents with suggested problems from the Nelson Textbook (Chapter 2)

9.1 Average Rate of Change: The AROC

Pg. 76 – 77 #1 (important question), 2, 4, 9, 10

9.2 Instantaneous Rate of Change (Pt. 1)

Pg. 86 – 87 #4ac, 6, 8, 9, 10 (centered interval only)

9.3 Instantaneous Rate of Change (Pt. 2)

Various given problems

9.1 Average Rate of Change – The AROC

From Physics we learn that we can calculate the average velocity of some moving object through the formula

$$v_{\rm avg} = \frac{\Delta s}{\Delta t} = -\frac{\sum\limits_{a} - \sum\limits_{b}}{\epsilon_{a} - \epsilon_{f}}$$

In general we can calculate the Average Rate Of Change [AROC], for some given function f(x), over an interval of time (the domain) $t \in [t_1, t_2]$ using the formula:

$$AROC = \frac{\Delta f}{\Delta t} = \frac{f(t_{o}) - f(t_{i})}{t_{o} - t_{i}}$$

Example 9.1.1

Consider the displacement function $s(t) = 100 - 4.9t^2$, which is being used to describe the displacement (s in m) of a falling body from the top of a 100m high cliff after t seconds. Over the given time intervals determine the average rate of change (the AROC) of

displacement for a stone dropped from the edge of the cliff:

a)
$$t = 0$$
 to $t = 1$ seconds.
b) $t \in [1, 2]$ (seconds).
c) $t \in [0, 3]$.
b) $AROL = \frac{s(2) - s(1)}{|2 - 1|}$

$$= \frac{(100 - 4.9(1)^{2}) - (100 - 4.9(1)^{2})}{|}$$

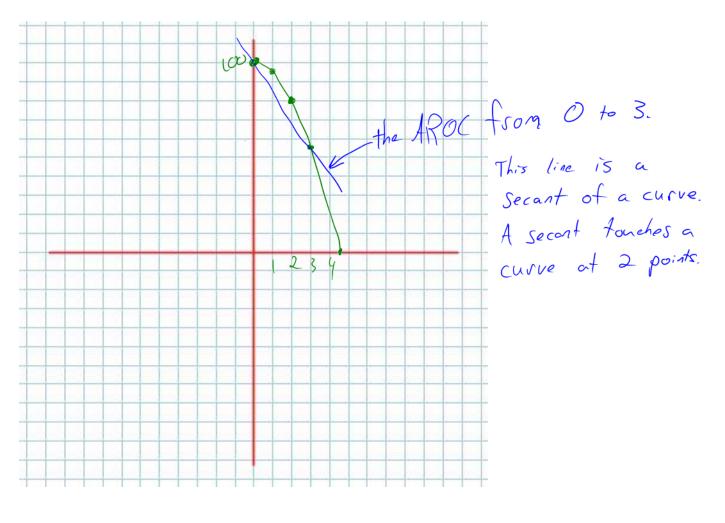
$$= \frac{30.4 - 15.1}{|}$$

$$= \frac{30.4 - 75.1}{|}$$

$$= -14.7 \text{ m/s}$$

$$= -4.9 \text{ m/sec}$$

$$= -4.9 \text{ m/sec}$$



A picture of the situation in example 9.1.1:

The Slope of a Secant is on AROC for some given fri over a closed interval.

Class/Homework for Section 9.1

Pg. 76 – 77 #1 (important question), 2, 4, 9, 10

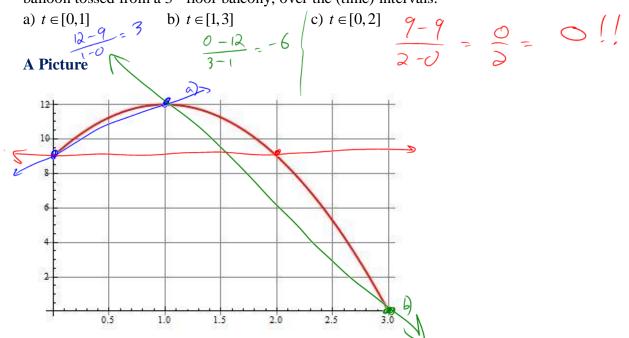
9.2 Instantaneous Rate of Change – The IROC (part 1)

One minute ago,

Nation we learned that for some given function f(x) we can calculate the AROC of that function (over some interval of the domain) as the slope of a secant.

Example 9.2.1

Given the displacement function $s(t) = -3(t-1)^2 + 12$, determine the AROC of a waterballoon tossed from a 3rd floor balcony, over the (time) intervals:

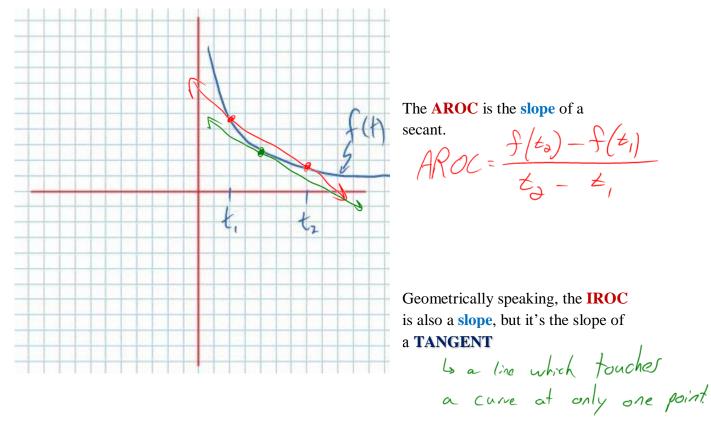


Note: Each AROC is a number which represents

Consider the question:

How can we calculate the velocity of the balloon at the **instant** t = 2 seconds? *Note: We CANNOT use the slope of a secant, since the secant requires two domain values, but an "instant" is at a single domain value* (t = 2 in this case).

Consider the following:



The Problem is this:

You cannot calculate the slope using only one point.

We will consider two techniques for **ESTIMATING** the so-called **INSTANTANEOUS RATE OF CHANGE (IROC)**

> Note: To estimate the IROC (a number we CAN'T calculate) we will be calculating the slopes of secants because we can do that calculation!

1) Using a "centered interval" and squeezing the interval to get better and better estimates

A Geometric View

Consider the picture:

- pick a volve, call it "a" E -> squeeze the interval by picking smaller "a". 3-0 3ta 3

An Algebraic View

Example 9.2.2

Estimate the IROC for $s(t) = -2(t-1)^3 + 3$ at t = 2.

Consider a = l = the AROC of [1,3] $= \frac{s(3) - s(1)}{3 - 1} = \frac{-13 - 3}{-13} = -8 \text{ units}$ This "a" is too big! consider a= O.1 The AROC of [1.9, 2.7] $= \frac{S(2.1) - S(1.9)}{21 - 19}$ = -6.02 consider a= 0.01 The AROC of [1.99, 2.01] = S(2.01) - S(1.99)2.01-1.99 = -6.002

:. The IROC ~ -6 units a t=2 poporimately

Example 9.2.3

From your text: Pg. 87 #5

Using a centered interval approach, determine an estimate for the IROC at x = 3 set of the height (in *m*) of an object, which is moving according to $h(x) = -5x^2 + 3x + 65$.

Use a = 0.01, [2.99, 3.07] $IROC \sim AROC = \frac{h(3.07) - h(2.99)}{3.01 - 2.99}$

= - 27 m/s

Class/Homework for Section 9.2

Pg. 86 – 87 #4ac, 6, 8, 9, 10 (centered interval only)

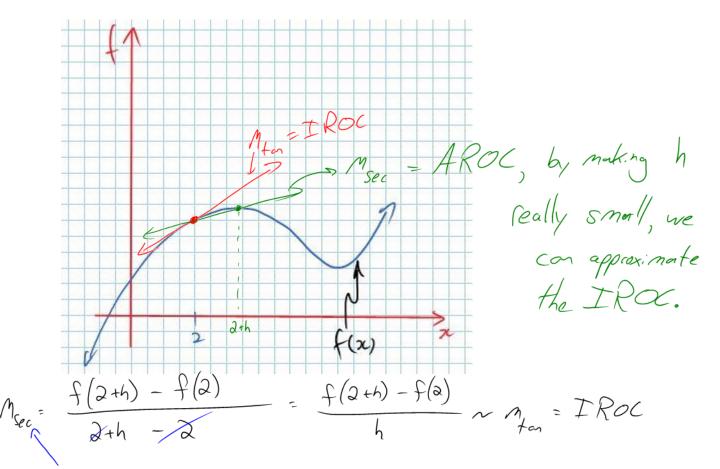
9.3 Instantaneous Rate of Change – The IROC (part 2)

The Difference Quotient

Suppose we wish to calculate the Instantaneous Rate of Change of some function, f(x), at x = 2. Last day we saw three things:

Rather than using a "centered interval" approach, we now consider the so-called **Difference Quotient** (which can be much more useful than the centered interval approach).

Consider the sketch:



Now, we understand that

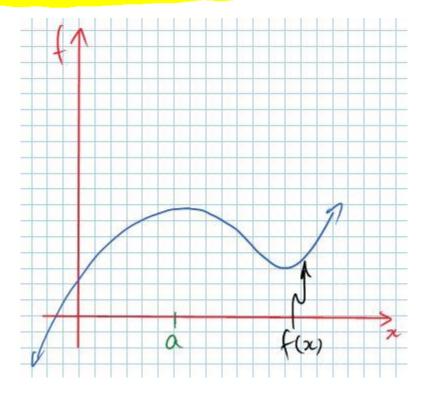
$$IROC \sim AROC = m_{sec} =$$

Definition of the Difference Quotient

In general, if we wish to approximate the IROC of f(x) at some (general) domain value x = a, then

$$IROC - AROC = \frac{f(a+h) - f(a)}{h}, \text{ for small } h.$$

Note: "*h*" can be either positive or negative. Consider the sketch:



Example 9.3.1

Given $s(t) = 2t^2 - 3t - 5$, determine a difference quotient which will estimate the IROC of s(t) at t = a. Use that difference quotient to estimate the IROC at t = 3 using h = 0.0001. IROC AROC = $\frac{s(a + h) - s(a)}{h}$, for small h.

For
$$a = 3$$
 and $h = 0.0001$
 $IROL \sim S(3.0001) - S(3)$
 0.0001

$$\sim \left(\frac{2}{3.000} - \frac{3}{3.000} - 5 \right) - \left(\frac{2}{3} - \frac{3}{3} - 5 \right)$$

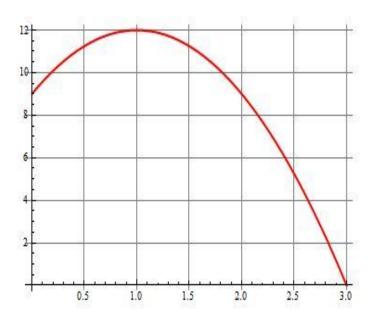
$$O.0001$$

~ 9.0002

. The IROC is Junits at Z=3.

Example 9.3.2

Consider the water-balloon problem from Example 9.2.1. The water-balloon "flies" according to the function $s(t) = -3(t-1)^2 + 12$. Estimate the instantaneous velocity (the IROC) of the balloon when it hits the ground (at t = 3 sec).



Class/Homework

Determine an estimate for the IROC of the given function at the indicated domain value using a difference quotient. Use h = 0.001 for your estimation.

a) $f(x) = x^2 - 3x + 1$ at $x = 2$	$IROC \sim 1$
b) $h(t) = 2^t - 3$ at $t = 0$	<i>IROC</i> ~ 0.693
c) $g(x) = \sin(x)$ at $x = \pi$	<i>IROC</i> ~ -1
d) $s(t) = \frac{t+1}{t-2}$ at $t = 3$	<i>IROC</i> ~ -3
e) $g(x) = x^3 + 2$ at $x = 3$	<i>IROC</i> ~ 27