Math 9 - Unit 2: Algebra One

Lesson #5: Dividing Monomials

Learning Goal: We are learning to divide by monomials.

We've added, subtracted, multiplied, and even raised monomials to powers. All that is left is dividing by monomials. First, let's develop a rule with numbers.

This leads to our 4th exponent law. When dividing, <u>Subtract</u> the exponents. Time to put it into practice!

a)
$$\frac{x^8}{x^5}$$

b)
$$\frac{y^{72}}{y^{46}}$$

c)
$$\frac{m^5 n^3}{m^2 n^1}$$

d)
$$\frac{18p^{7}q^{9}}{3p^{2}q^{2}}$$

e)
$$\frac{3xy}{4x^2y^5}$$

$$=$$
 y $\frac{\partial \mathcal{E}}{\partial x}$

$$= M n^{\circ}$$

$$= \frac{1}{2} x^{3}$$

The final step is to divide a monomial into a polynomial, such as $\frac{4x^5 - 2x^3 + 6x^2}{2x^2}$. However, first let's look back

at adding fractions so we can see an integral step that we will need to use:

$$= \frac{\frac{1}{2} + \frac{3}{4} + \frac{5}{8}}{8} + \frac{6}{8} + \frac{5}{8} = \frac{\frac{4}{5} + \frac{5}{8}}{8}$$

Keep in mind when doing the following questions that the denominator gets applied to all the terms in the numerator.

a)
$$\frac{4x^5 - 2x^3 + 6x^2}{2x^2}$$
 split up into z fractions
$$= \frac{4x^5 - 2x^3 + 6x^2}{2x^3} + \frac{6x^2}{2x^3}$$

b)
$$\frac{16x^{3}y^{3} + 8x^{2}y^{4}}{4x^{2}y}$$

$$= \frac{16x^{3}y^{3} + 8x^{2}y^{4}}{4x^{2}y} + \frac{16x^{3}y^{3}}{4x^{2}y^{4}}$$

$$= 2x^3 - |x| + 3$$

$$= 4xy' + 2y^3$$

MTH1W

c)
$$\frac{40a^3b^6 - 50a^2b^3 + 10ab}{10ab}$$

d)
$$\frac{9x^7 + 27x^5 - 15x^4}{3x^3}$$

$$= \frac{4a^2b^5 - 5ab^2 + |ab^0|}{5ab^2 + |ab^0|} = -3x^4 - 9x^2 + 5x$$

$$=-3x^4-9x^2+5x$$

e)
$$\frac{192r^{78}s^{34} - 144r^{65}s^{53} - 256r^{98}s^{23} + 80r^{88}s^{45}}{16r^{33}s^{21}}$$

$$= 12r5 - 9r5 - 16r5 + 5r5$$

Success Criteria:

- I can divide like variables by subtracting their exponents
- I can understand the difference between dividing coefficients and dividing variables
- I can divide the monomial into each term of a polynomial separately
- I can recognize that when you divide two identical monomials, the result is one.