
Lesson #9.4: Scatter Plots and Lines of Best Fit

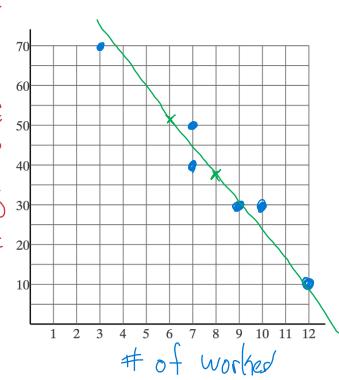
Name: May 25 2023

Learning Goal: We are learning to create a line of best fit from a scatter plot.

Remember watching Adam and Jamie gather data points on the length of time it took for a bullet to travel to a target? After they had three data points, Adam was able to draw a graph known as a scatter plot. He was extremely fortunate that the three data points sat perfectly in a line. Taking this one step farther, we could also determine the equation of this line, thus allowing us to calculate any time or distance.

Today, we will take data from a table and plot it on a scatter plot. Then, we will determine the **line of best fit**. This is a line in y = mx + b form. We will also utilize y = mx + b to create that line. The line of best fit best describes the relationship between the data points. This, like standard deviation, is not difficult, but it is a long and tedious task. However, on small data sets, it is completely possible to do by hand.

b=-mx+Y,


This process is called Statistical Movelly we are only looking at creating a line, but you can do this with curves and make models of the trajectory of a rocket Jaunch, the growth of a virus, the housing market, the sales for your company, and so much more! This is IMMENSLEY useful.

Example: Plot the points, calculate the line of best fit, then draw the line.

- 1. Plot the points.
- Calculate the averages for the x and y coordinates.
- 3./ Fill in the table (next page)
- 4. Calculate slope.
- 5. Determine y = mx + b.
- 6. Graph the line.
- ✓. Answer any questions!

U	-5		L COMPlete
	X	Y	a jou
	3	70	
	7	40	
	7	50	
	9	30	\ \
	10 12	30	3
	12	10	Š
			CL
			#
			Ι,

		8		38.7	3	
x	у /	$x-x_a$	$(x-x_a)^2$	$y-y_a$	$(x-x_a)(y-y_a)$	
3	70	3-8=-5	(-5)=25	31.7	(-5)(317)=-158	5.5
7	40	7-8:-1	/	1.7	(-1)(1.7)=-1.7	
7	50	7-8=-1	/	11.7	-1/.7	
9	30	9-8=1	1	-8.3	-8.3	
10	30	W-8=2	4	-8.3	-16.6	
12	10	7-8-4	16	-28.3	-1/3.2	

$$\begin{array}{c}
\text{USE} \times = 6, \ \gamma = ? \\
y = -6.45(6) + 90 \\
y = 5/ (6,51)
\end{array}$$

$$\begin{array}{c}
\text{USE} \times = 8, \ \gamma = ? \\
y = -6.45(8) + 90 \\
y = 38 (8,38)
\end{array}$$

(5) Need by using
$$x_a = \sqrt{4}$$

 $b = -m \times 4 \times 4$
 $b = -(-6.45)(8) + 38.3$
 $b = 5/.6 + 38.3 = 89.9 = 90.$

Now what? The best part is that we can now answer questions!

a) If we had one worker, how many hours would it take?

$$y = -6.45(1) + 90$$

 $y = 83.55 hours$

b) I need a job done in 20 hours, so how many workers should I hire?

Success Criteria:

- I can plot points on a scatter plot
- I can calculate the line of best fit 10.85 = X ... \ \ Workers.