Lesson 4.3: Cones, Pyramids and Spheres

Date:

Learning Goal: We are learning to calculate the surface area and volume of cones, square-based pyramids and spheres.

For each figure calculate the surface area and the volume.

1.

SA: $MC^2 + MCS$ $V = \frac{MC^2h}{3}$ $SA = (3.14)(\frac{13}{3} + (2.14)(3)(8.7))$ $V = (3.14)(\frac{13}{3})(\frac{14}{3})$ SA = 153.86 + 345.09 $V = \frac{2154.04}{3}$ $V = \frac{2154.04}{3}$ $V = \frac{2154.04}{3}$ $SA = MC^2 + MCS$ $SA = (3.14)(\frac{10}{3}) + 3.14(\frac{10}{3})(\frac{10}{3}) + 3.14(\frac{10}{3})(\frac{10}{3})(\frac{10}{3}) + 3.14(\frac{10}{3})(\frac{10}{3})(\frac{10}{3}) + 3.14(\frac{10}{3})(\frac{10}$ SA= 1017.36 cm2

V= Wrah

Use the appropriate formula to solve for the missing measurement.

7. A cone has a volume of 2094.4cm³ with a radius of 10cm. Determine the length of the slant.

$$\int_{-\frac{\pi}{2}}^{2\pi} \frac{\pi^{2}}{3} \int_{0.4}^{2\pi} \frac$$

8. A sphere has a volume of 904.78in³. Determine the length of the radius.

Success Criteria

• I can use the appropriate formula to find the surface area or volume of a cone, pyramid, or sphere