Name:

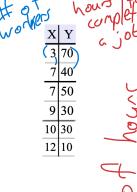
Lesson #9.4: Scatter Plots and Lines of Best Fit

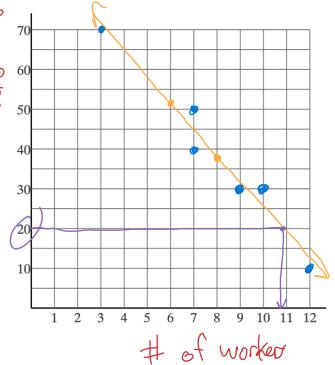
Learning Goal: We are learning to create a line of best fit from a scatter plot.

Remember watching Adam and Jamie gather data points on the length of time it took for a bullet to travel to a target? After they had three data points, Adam was able to draw a graph known as a scatter plot. He was extremely fortunate that the three data points sat perfectly in a line. Taking this one step farther, we could also determine the equation of this line, thus allowing us to calculate any time or distance.

b=-mxty

Today, we will take data from a table and plot it on a statter plot. Then, we will determine the **line of best fit**. This is a line in y = mx + b form. We will also utilize y = y + b to create that line. The line of best fit best describes the relationship between the data points. This, like standard deviation, is not difficult, but it is a long and tedious task. However, on small data sets, it is completely possible to do by hand.


This process is called <u>Statistical Modelling</u> We are only looking at creating a line, but you can do this with curves and make models of the trajectory of a rocket launch, the growth of a virus, the housing market, the sales for your company, and so much more! This is IMMENSLEY useful.


Example: Plot the points, calculate the line of best fit, then draw the line.

- 1. Plot the points.
- Calculate the averages for the /x and y coordinates.
- 3. Fill in the table (next page)
- 4. / Calculate slope.
- $5. \quad \text{Determine } y = mx + b.$
- 6. Graph the line.
- 7. Answer any questions!

$$\chi_a = \frac{48}{6} = 8$$

$$\gamma_6 = \frac{236}{6} = 38.3$$

		Q		7 283	
x	y	$x - x_a$	$(x-x_a)^2$	$y-y_a$	$(x-x_a)(y-y_a)$
3	70	3-8: -5-	-, 25	31.7	(-5)(31.7)=-158
7	40	7-8= -1		107	-67
7	50	- - (11.7	-11.7
9	30	9-8: 1	(-8,3	-8 _a 3
0	30	10-8=2	4	-8.3	-16.6
12	10	12-8-4	16	-28.3	-113.2
	,	R	n: Add		- Rise - adding th
/			. /		•

 $M = \frac{y's}{x's} = \frac{-310c}{Run} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{x's} = \frac{-310c}{Run} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{x's} = \frac{-310c}{Run} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{x's} = \frac{-310c}{Run} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{x's} = \frac{-310c}{Run} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{-310c}{848} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{y's}{Run} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{y's}{Run} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = \frac{y's}{Run} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = -6.45 \text{ (asc 2 decimals)}$ $M = \frac{y's}{Run} = -6.45 \text{ (asc 2 decimals)}$ b=-mx+/

b: - (-6.45)(8) + 38,3 h= 90

9 = -6.45x + 90

use x=8

y=-645(8)+90 (8,38)

Now what? The best part is that we can now answer questions!

a) If we had one worker, how many hours would it take?

$$y = -6.45(1) + 90$$

 $y = 83.55$ hours.

b) I need a job done in 20 hours, so how many workers should I hire?

X =

Success Criteria:

- I can plot points on a scatter plot
- I can calculate the line of best fit