## Math 9 - Unit 2: Algebra One



## **Lesson #4: More Distributive Property and Powers of Monomials**

**Learning Goal**: We are learning to expand and simplify more complicated expressions.

Let's start off by continuing our lesson on the Distributive Property. Take a look at the following questions:

**Expand AND simplify (put your answers in descending order):** 

a) 
$$3x(4x^2-7x+2)+4x^2(2x-3)$$

$$= 12x^{3} - 21x^{2} + 6x + 8x^{3} - 12x^{2}$$

$$= 20x^3 - 33x^2 + 6x$$

b) 
$$-4y^2(3y^2-5)-5y^3(6+y)$$

$$= -12y^{4} + 20y^{2} - 30y^{3} - 5y^{4}$$

$$= -17y^{4} - 30x^{3} + 20y^{2}$$

c) 
$$3mn(2m-7n)-5m^2(4n+8)+6n^2(3m-n)$$

$$= 6mn - 2lmn^2 - 20m^2n - 40m^2 + 18mn^2 - 6n^3$$

$$=-14m^2n-3mn^2-40m^2-6n^3$$

Now we are going to go back to discussing monomials. How do we simplify  $(3x^2y^5)^3$ ? This is called a monomial raised to a power. How does the outside exponent affect the question? First, how does it work with just a number?

Simplify 
$$(4^3)^{2} = (4^3) \times (4^3)$$

$$= (4 \times 4 \times 4) \times (4 \times 4 \times 4) = 4^{6}$$

a) 
$$(x^{4})^{5}$$

c) 
$$\left(m^3 n^6\right)^4$$

$$=\chi^{20}$$

$$=$$
  $y^{16}$ 

$$= m^{12} a^4$$

That's all well and good (hopefully), but how do you handle a question with a coefficient?

Consider the expression from before,  $(3x^2y^5)^{5/2}$ . Expand it without using the laws.

$$= (3x^{2}y^{5})x(3x^{2}y^{5})x(3x^{2}y^{5})$$

$$= 3x^{6}y^{5} = 27x^{6}y^{5}$$

The coefficient was just raised to the power of 3! Awesome. Try out some more, this time following the laws.

a) 
$$(2x^4y^2)^5$$

b) 
$$\left(-3m^{7}n\right)^{(2)}$$

$$= (2)^{5} (x)^{5} (y)^{5}$$

a) 
$$(2x^4y^2)^5$$
 b)  $(-3m^7n)^2$  c)  $(5a^2b^3c^4d^5)^6$  multiply all expounts by  $(2)^5(x^4)^7(y^5)^7 = 9m^1n^2 = 15625a^{12}182930$ 

$$=32 \times ^{20} y^{10}$$

First, deal with the outside exponents

a) 
$$(3x^2y^5)^{\frac{12}{2}}(2xy^3)$$

b)  $(-4m^3n^2)^3(3m^4n^3)^2$ 

c)  $(-4m^3n^2)^3(3m^4$ 

f)  $(5x^2y^4z^6)^0$  Whoah!! Exponent of zero? How does that work?

There are multiple explanations. We will look at a pattern, starting with  $4^1$  then moving up the ladder.

$$4^{4} = 25^{6}$$

$$4^{3} = 64$$

$$4^{2} = 16$$

$$4^{1} = 4$$

$$4^{0} = 1$$

$$4^{0} = 1$$

$$4^{1} = 4$$

$$4^{2} = 4$$

$$4^{2} = 4$$

$$4^{3} = 4$$

$$4^{4} = 4$$

$$4^{5} = 4$$

$$4^{2} = 4$$

$$4^{2} = 4$$

$$4^{3} = 4$$

$$4^{2} = 4$$

$$4^{3} = 4$$

$$4^{4} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

$$4^{5} = 4$$

As you move up the ladder, you keep multiplying by 4. If you were to go down the ladder, you would \_\_di\_de\_\_\_ by 4. Follow the pattern to determine what four to the power of zero is.

This leads to another exponent law: Anything to the power of zero is equal to \_\_\_\_\_.

$$y^{-2} = \frac{1}{16} = \frac{1}{4^2}$$

$$= 5^{\circ}(x)^{\circ}(y^{\prime})^{\circ}(z^{\prime})^{\circ}$$
$$= 1x^{\circ}x^{\circ}z^{\circ}$$

$$\left(3\sqrt{2}\right)^{3} = 27\sqrt{6}$$

## Success Criteria:

- I can use the distributive property to multiply a polynomial with a monomial
- I can use the distributive property to combine multiple variables into a single term
- I can simplify a monomial raised to a power by multiplying the exponents of each variable
- I can recognize that when a coefficient is raised to a power, it is NOT NOT NOT multiplied
- I can understand that raising to the power of zero equals one.