Lesson #6: Pythagorean Theorem

Date: _____

Learning Goal: We are learning to use the Pythagorean Theorem to solve for missing sides in right-angled triangle.

The infamous Pythagorean Theorem is essentially an equation. As long as we have enough information, we can use it to solve.

Part One: Given the following triangles, label the sides a, b, and c, then solve for the missing side.

$$a^{2} + b^{2} = c^{2}$$

 $a^{2}+b^{2}=c^{2}$ hypotenuse 11.2 $-d^{1}agonal$ -longest sich $-opposite right
ongle
<math display="block">2. \quad b = 2$ $5.9^{2}+b^{2}=c^{2}$ $34.8l+b^{2}=l35.44$ -34.8l -34.8l $b^{2}=90.63$

Part Two: Given the following triangles, use the Pythagorean Theorem to prove whether or not the triangle is a right-angled triangle. First, label the sides.

.. this is not a right triongle

a+b=c2

$$6.6^2 + 11.2^2 = c^2$$

43.56 + 125.44 = 62

$$13 = c$$

: this is a

right triangle

Part Three: Read the question twice. Draw the situation (probably utilizing a right-angled triangle). Label the information that you know. Solve for the missing side. Write the answer to the question in the sentence.

1. A television screen is described in terms of the diagonal measure of its screen. If a TV screen is 20 inches wide and 15 inches high, what is the length of its diagonal (and hence, the size of the TV)?

Success Criteria:

• I can use the Pythagorean Theorem to solve for a missing side in a triangle.