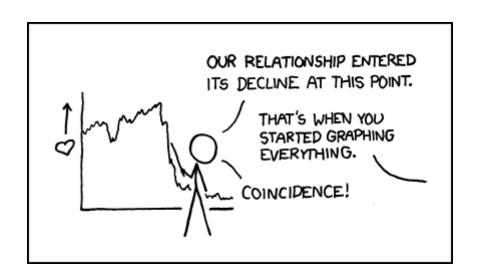
Functions 11

Course Notes

Chapter 1 – Introduction to Functions

We will learn

- the meaning of the term Function and how to use function notation to calculate and represent functions
- the meanings of the terms domain and range, and how a function's structure affects domain and range
- how to use transformations to represent and sketch graphs



1.1 Relations and Functions (*This is a KEY lesson!*)

Learning Goal: We are learning to recognize functions in various representations.

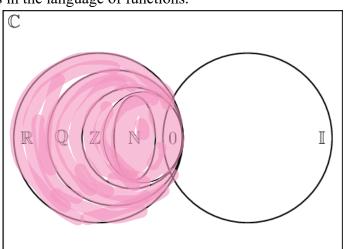
This course is called **FUNCTIONS**, so it seems rather important that you know what a function actually is. However, before we define and dive into the world of functions, it is important to be familiar with a few other commonly used terms in the language of functions.

Definition 0.a.

A Set is a well-defined Collection of things or numbers. Natural #s = $N = \{1, 2, 3, 4, \dots \}$

Whole #s = W = { 0, 1, 2, 3, 4, ... }

Integers = Z = \ ... -2, -1, 0, 1, 2, ... \

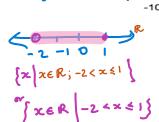


Kational #s = $Q = \{ \{ \{ \} \} \}$ | $Q \neq 0 \}$ | Real #s = $R = \{ \{ \} \}$ | invational and $\{ \} \}$ | Irrational #s = $Q = \{ \{ \} \} \}$ | $\{ \{ \} \}$ | $\{ \{ \} \} \}$ | $\{ \{ \} \} \}$ | $\{ \{ \} \} \}$ | $\{ \{ \} \} \}$ | $\{ \{ \} \}$ | $\{ \{ \} \} \}$ | $\{ \{ \}$ | $\{ \{ \} \}$ | $\{ \{ \}$ | $\{ \{ \} \}$ | $\{ \{ \} \}$ | $\{ \{ \} \}$ | $\{ \{ \} \}$ | $\{ \{ \} \}$ | $\{ \{ \} \}$ | $\{ \{ \} \}$ | $\{ \{ \} \}$ | $\{ \{ \}$

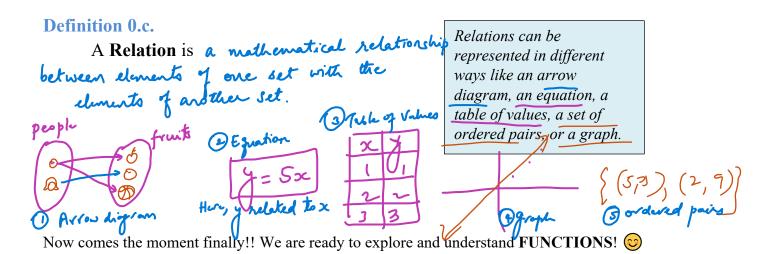
Definition 0.b. Set Notations: Some fancy ways to represent sets of Numbers!

1) SET BUILDER FORM

• Example: Represent the given set of numbers highlighted on the number line in two different ways.

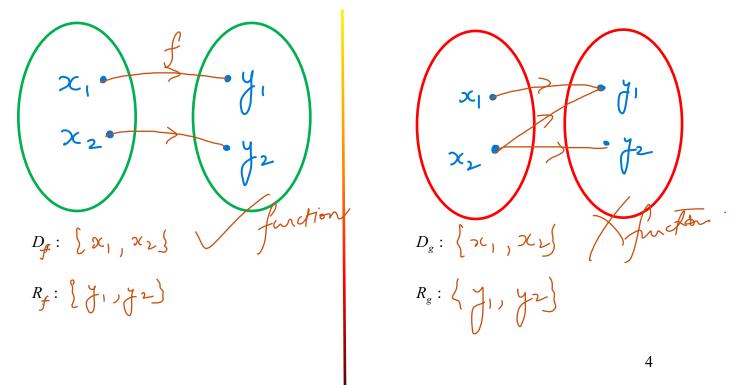


(2) SET-BUILDER =
$$\left\{ x \in \mathbb{Z} \left| -5 < x \leq 3 \right\} \right\}^{3}$$

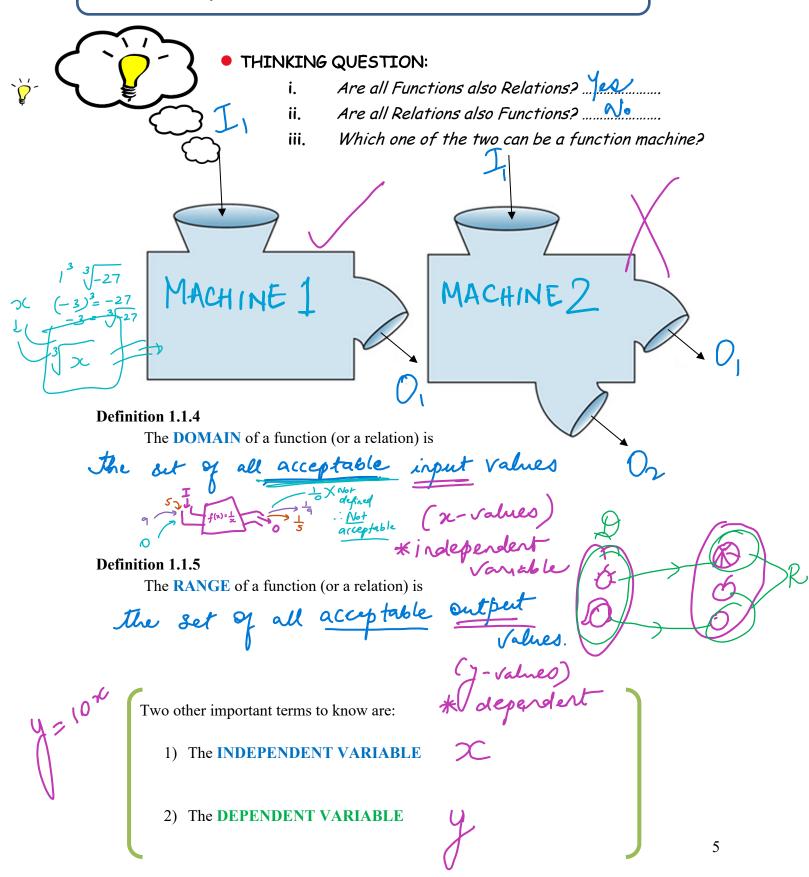


You need to know, very well, the following (algebraic) definition:

We can visualize what a function is (and isn't) by using so-called "arrow diagrams":

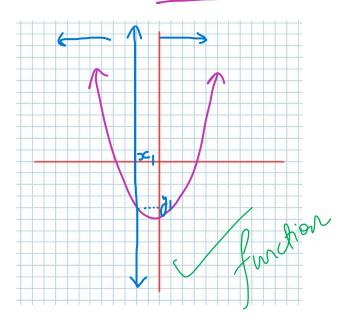


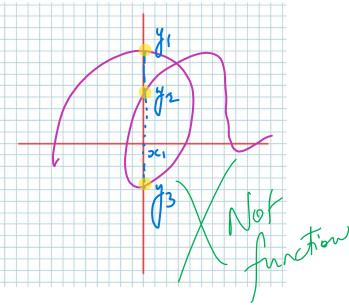
We can also view *Functions* visually like a *Vending Machine* because they are *PREDICTABLE* just like our functions!!



KNOWING WHEN A RELATION IS, AND ISN'T, A FUNCTION

V.L.T. The Vertical Line Test **Graphically:**





Algebraically: (NOTE: this is a "rough" way of thinking about the problem)

If the Dependent Variable is has an odd exponent, then it is a Function!

welcome to ask for help from your peers or myself. It is due the next day!)

Pg. 10-12 #1, 2 (no ruler needed), 6, 7 (no need for the VLT), 9, 11, 12 (think carefully) about the idea that the domain and range are "limited")

Success Criteria:

- I can determine the domain of a relation or function as the set of all values of the independent variable
- I can determine the range of a relation or function as the set of all values of the dependent variable
- I can apply the vertical line test to determine if a graph is a function
- I can recognize whether a relation is a function from its equation

2) x + y = 4

Not funtion

6

Not funtion

1.2 Function Notation

Learning Goal: We are learning to use function notation to represent linear and quadratic functions

Here we learn a NEW AND IMPROVED WAY for describing a function, algebraically. You have been using the following form for functions (in this example, for a quadratic):

$$y = 3(x-2)^2 + 1$$

A much more useful way of writing function is to use **FUNCTION NOTATION**. The above quadratic (which we call a "function of x" because the domain is given as x-values) can be

$$f(x) = 3(x-2)^{2} + 1$$

$$f(2) = 3(2-2)^{2} + 1 = 1$$

This new notation is so useful because of the "symbol": $\int (x) = x$

This notation shows **BOTH** the **DOMAIN** and the **RANGE** values. Because of that, the function notation shows us **points** on the graph of the function. $(x,y) \equiv (x,f(x))$

Let's do some examples (from your text on pages 23 - 24)

Example 1.2.1

4. Evaluate
$$f(-1)$$
, $f(3)$, and $f(1.5)$ for
a) $f(\mathbf{x}) = (\mathbf{x} - 2)^2 - 1$ **b)** $f(x) = 2 + 3x - 4x^2$

$$f(-1) = (-1 - 2)^{2} - 1$$

$$f(-1) = 8$$

$$f(3) = (3-2)^2 - 1$$

$$f(3) = 0$$

$$\int f(3) = 0$$

$$f(1.5) = (1.5-2)^{2}-1$$

$$f(1.5) = (-0.5)^{2}-1$$

$$= 0.25-1.00$$

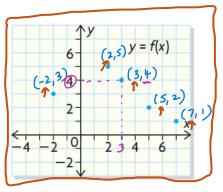
$$f(1.5) = -0.75$$

$$f(1.5) = -0.75$$

Example 1.2.2

- **6.** The graph of y = f(x) is shown at the right.
 - a) State the domain and range of f.
- **b**) Evaluate.
 - i) f(3)

ii) f(5)



ii)
$$f(5)$$
iv) $f(5) - f(3)$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4 - 2 - 2 \\ -2 - 2 \end{cases} \end{cases}$$

$$\begin{cases} -4$$

$$(ii) f(5) = 2$$

(iii)
$$f(5-3) = f(2) = 5$$

(iv)
$$f(5)-f(3)=2-4=-2$$

Example 1.2.3

11. For g(x) = 4 - 5x, determine the input for x when the output of g(x) is

a)
$$-6$$

b) 2

$$\beta(x) = 4 - 5x$$

$$= \frac{\sqrt{6}}{4} = 4 - 5x$$

$$= -10 = -5x$$

$$\Rightarrow x=2$$

$$\Rightarrow \boxed{x = \frac{2}{5}} = 0.4$$

Example 1.2.4

7. For
$$h(x) = 2x - 5$$
 determine a) $h(a)$

- c) h(3c-1)
- **b**) h(b+1)

d) h(2-5x)

c)
$$h(3c-1) = 2(3c-1)-5$$

= $6c-2-5$
= $6c-7$

b)
$$h(b+1) = 2(b+1)-5$$

= $2b+2-5$
= $2b-3$

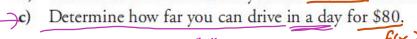
d)
$$h(2-5x) = 2(2-5x)-5$$

= $4-(0x-5)$
= $-10x-1$

Example 1.2.5

- 12. A company rents cars for \$50 per day plus \$0.15/km.
 - a) Express the daily rental cost as a function of the number of kilometres travelled.

b) Determine the rental cost if you drive 472 km in one day.



a)
$$f(x) = 0.15x + 50$$

$$x = distance in Em$$

 $f(x) = daily rental cost$

Determine how far you can drive in a day for \$80.

a)
$$f(x) = 0.15x + 50$$
 $f(x) = 0.15x + 50$
 $f(x) = 0.15(472) + 50$
 $= 70.8 + 50$
 $= 120.80$

Determine how far you can drive in a day for \$80.

 $x = 0.15(x) + 50$
 $f(x) = 0.15(x) + 50$
 $f(x) = 0.15(472) + 50$
 $f(x) = 0$

c)
$$80 = 0.15x + 50$$

 $\Rightarrow 80 - 50 = 0.15x$
 $\Rightarrow 30 = 0.15x$
 $\Rightarrow 30 = x$
 $\Rightarrow x = 200 \text{ km}$

HW-Section 1.2

Page 23 #1-2, 5, 8b, 10, 11cd, 15, 16, challenge #17

Success Criteria:

- I can evaluate functions using function notation, by substituting a given value for x in the equation for f(x)
- I can recognize that f(x) = y corresponds to the coordinate (x, y)
- I can, given y = f(x), determine the value of x

1.3 and 1.4 Parent Functions and Domain and Range

Learning Goal: We are learning the graphs and equations of five basic functions; and using their tables, graphs, or equations to find their domains and ranges.

Two **INCREDIBLY IMPORTANT** aspects of functions are their

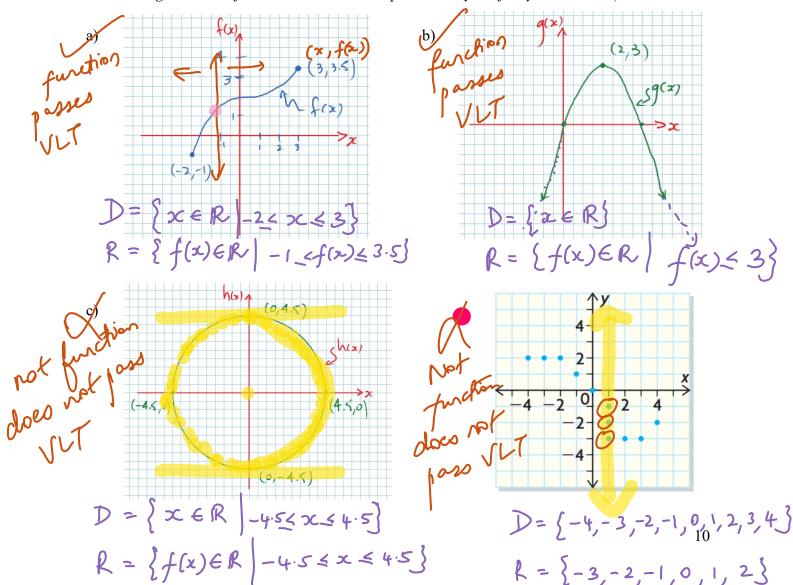
Again, the Domain is the set of all acceptable input values (x-velices)

And, the Range is the set of all acceptable output values

Example 1.4.1

Example 1.4.1

Given the SKETCH OF THE GRAPH of the RELATION determine: the domain, the range of the relation, and whether the relation is, or is not, a function. (Note that domain and range are sets of numbers and can be represented by the fancy set notation)



Example 1.4.2 (From Pg. 36 in your text)

1 cmp = 250 mL 10 cmps = 2500 mL 8. Write a function to describe coffee dripping into a 10-cup carafe at a rate of 1 mL/s. State the domain and range of the function (1 cup = 250 mL).

$$t = time (in sec)$$
 $V = Vohne (in ml)$

$$D = \{ t \in \mathbb{R} \mid 0 < t \le 2500 \}$$

$$R = \{ V(t) \in \mathbb{R} \mid 0 < V \le 2500 \}$$
FUN WITH DOMAIN AND RANGE

Work with a partner to create a simple logo for a future start-up company (using at least 16-line segments) on Desmos.

THE PARENT FUNCTIONS (for Grade 11)

Together we will explore (graphically) basic properties of the five *parent* functions:

a) Linear $f(x) = \infty$

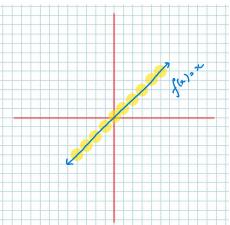


TABLE	ρf	VAL	JES
1.20	~	.)	

-	イベジス	
K	+(x)	(x,f(x))
3	3	(-3, -3)
2	-2	(-2,-2)
1	-	(-1,-1)
0	0	(0,0)
1	l l	(1,1)
2	2	(2,2)
3	3	(3,3)

$$D = \{x \in R\}$$

$$R = \{f(x) \in R\}$$

The graph is a straight line

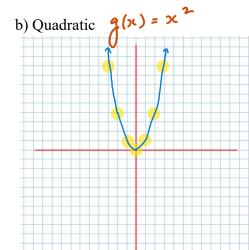


TABLE OF NALUES

\sim	g(2)	(x,g(x))
-3	09	(-3/9)
-2	4	(-2, 4)
-1		(-LU)
0	0	(0,0)
J		(1.1)
2	4	(2,4)
3	9	(3, 4)

$$D = \left(x \in \mathbb{R} \right)$$

$$\mathbb{R} = \left\{ g(x) \in \mathbb{R} \mid g(x) \geq 0 \right\}$$

The graph is a parabola

c) Absolute Value h(x) = |x|

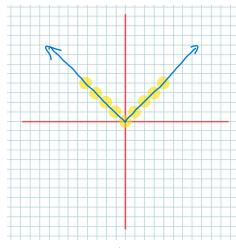


TABLE OF VALUES

	1 2				
X	h(x)	(x h (x)			
-3	3	(-3.3)			
-2	2	(-2.2)			
-1		(-L)			
0	0	(0,0)			
ı	1	CLID			
2	2	(2,2)			
3	3	(3,3)			
- Radical sign					

 $D = \{x \in \mathbb{R}\}$ $R = \{k(x) \in \mathbb{R} \mid k(x) \ge 0\}$

The graph is a W-shape

d) Square Root $i(x) = \sqrt{x}$

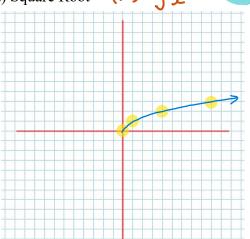


TABLE OF VALUES

< Radicard

11.000	Jæ	
X	i(x)	$(x, \tilde{u}(x))$
0	Q	(0,0)
l)	(1,1)
4	2	(4,2)
9	3	(9,3)
16	4	(16,4)
25	ს	(25,5)
36	6	(36,6)

 $D = \left\{ x \in \mathbb{R} \mid x \ge q \right\}$ $R = \left\{ i(x) \in \mathbb{R} \mid i(x) \ge q \right\}$

The graph is a 1 parabola opening to the Thight.

e) Reciprocal $j(x) = \frac{1}{x}$ (RESTRICTION: $x \neq 0$)

TABLE OF VALUES

	y	<u>,</u> 0	
	Ţ.		
Here, Equations of the Asymptotes:			y=0
			U
$0 \times anis = 0$ $2 \times anis = 0$			

×	1(n)	(x, j(x))
-3_	F0.5	(-4, 1 0.25) (-2, -0.5)
~	-1	(-1,-1)
* * 0	XX	XX
)	(1,1)
2	0.5	(2,0.5)
4	0.25	(4,0.25)
-0.5	-2	(-0.5,-2)
0.5	2	(0.5,2)

D={x & R | x + 0} R={j(x) & R | j(x) + 0}

The graph is a hyperbola

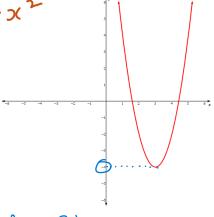
HSYMPTOTE

These are lines to which the

graph Seems to touch but never

9. Determine the domain and range of the following graphed functions:

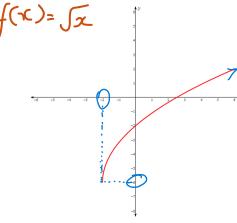
$$f(x) = 2(x-3)^2 - 4$$



$$D = \{x \in R\}$$

$$R = \{f(x) \in R \mid f(x) \ge -4\}$$

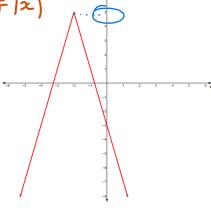
$$f(x) = 2\sqrt{2x+4} - 6$$



$$D = \{x \in R \mid x \ge -2\}$$

$$R = \{f(x) \in R \mid f(x) \ge -6\}$$

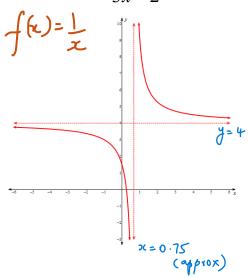
$$f(x) = -4|x+2| + 5$$



$$D = \left\{ x \in \mathbb{R} \right\}$$

$$R = \left\{ f(x) \in \mathbb{R} \mid f(x) \le 5 \right\}$$

$$f(x) = \frac{5}{3x - 2} + 4$$

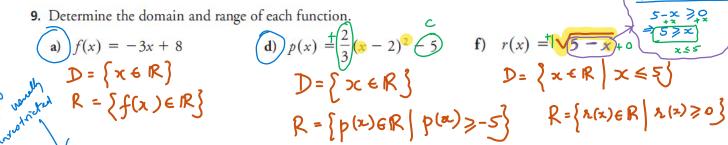


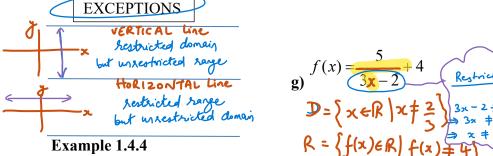
$$D = \left\{ x \in \mathbb{R} \mid x \neq 0.75 \right\}$$

$$R = \left\{ f(x) \in \mathbb{R} \mid f(x) \neq 4 \right\}$$

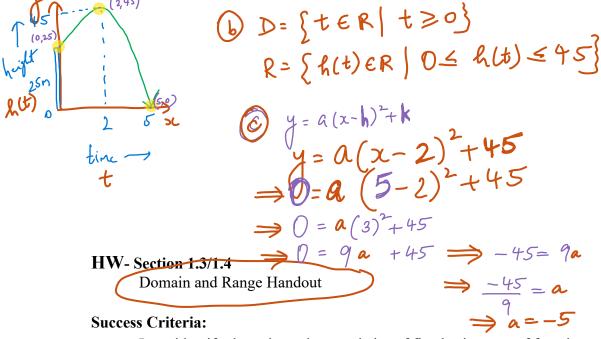
f(x)=a(x-h)+k f(x)=a(x-h)+

Example 1.4.3 (From Pg. 37 in your text...use Desmos)





- 10. A ball is thrown upward from the roof of a 25 m building. The ball reaches a height of 45 m above the ground after 2 s and hits the ground 5 s after being thrown.
 - a) Sketch a graph that shows the height of the ball as a function of time.
 - b) State the domain and range of the function.
 - c) Determine an equation for the function.



- I can identify the unique characteristics of five basic types of functions
- I can identify the domain and ranges of five basic types of functions
- I can identify when there are restrictions given real-world situations

: Equation for the function:- $y = -5(x-2)^{2} + 45$ or $h(t) = -5(t-2)^{2} + 45$

1.6 – 1.8: Transformations of Functions (Part 1)

Learning Goal: We are learning to apply combinations of transformations in a systematic order to sketch graphs of functions.

To TRANSFORM something is to charge the form.

TRANSFORMATIONS OF FUNCTIONS can be seen in two ways: algebraically, and graphically. We'll begin by examining transformations graphically.

But before we do, we need to remember that the GRAPH OF A FUNCTION, f(x), is given by:

$$f(\mathbf{x}) = \left\{ \left(\mathbf{x}, f(\mathbf{x}) \right) | \mathbf{x} \in D_f \right\}$$

So, for functions we have two things (NUMBERS!) to "transform". We can apply transformations to

- 1) **Domain** values (which we call **HORIZONTAL TRANSFORMATIONS**)
- 2) Range values (which we call VERTICAL TRANSFORMATIONS)

There are THREE BASIC FUNCTIONAL TRANSFORMATIONS

- 1) Flips (Reflections "across" an axis)
- 2) Stretches (*Dilations*)
- 3) Shifts (Translations)

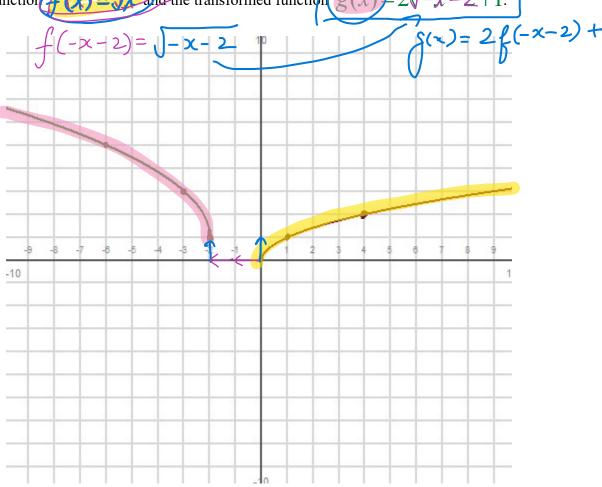
So, we can have **Horizontal** flips, stretches and/or shifts, and **Vertical** flips, stretches and/or shifts. Now let's take a look at how transformations can be applied to functions.

Note: We'll (mostly) be applying transformations to our so-called "parent functions" (although applying transformations to linear functions can seem pretty silly!)

Example 1.8.1

Consider, and make observations concerning the sketch of the graph of the parent

function $f(x) = \sqrt{x}$ and the transformed function $g(x) = 2\sqrt{-x-2} + 1$.



Horizontal Transformations

H. Flip. H. shift 2 units left **Vertical Transformations**

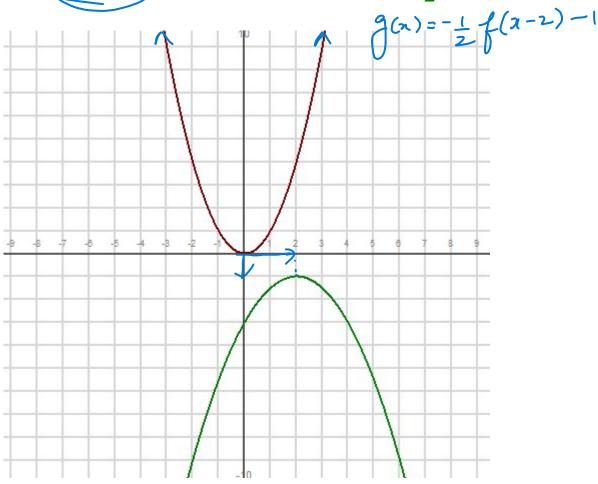
V-stretch V. shift | mit UP.

Note: In the above example we can **algebraically** describe g(x) as a transformed f(x) with the functional equation g(x) = 2f(-x-2)+1

Example 1.8.2

Consider, and make observations concerning the sketch of the graph of the parent

function $f(x) = x^2$ and the transformed function $g(x) = -\frac{1}{2}(x-2)^2 - 1$



Horizontal Transformations

H. Stretch

H. shift 2 with right

Vertical Transformations

V.flip V.shift (unit down

Note: In the above example we can **algebraically** describe g(x) as a transformed f(x) with the functional equation

1.6 – 1.8: Transformations of Functions (Part 2)

We now turn to examining Transformations of Functions from an algebraic point of view (although a geometric perspective will still shine though!)

Definition 1.8.1

Given a function f(x) we can obtain a related function through functional transformations as

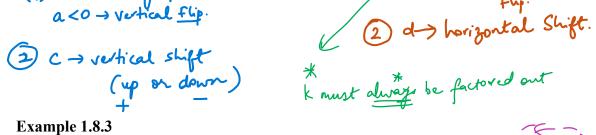
g(x) = af(k(x-d)) + c, where $(ii) a \rightarrow \text{ vertical stretch}$ $(ii) a > 0 \rightarrow \text{ new graph recembles parent}$ $a < 0 \rightarrow \text{ Vertical flip}$

HORIZONTAL TRANSFORMATIONS

(i) k <0 -> Horizontal Stretch by /k

(ii) k <0 -> Horizontal

Phy.



Example 1.8.3

Consider the given function. State its parent function, and all transformations.

State its parent function, and all transform
$$f(x) = 3\sqrt{\frac{-x+2}{-1}} - 1$$

$$f(x) = 3\sqrt{\frac{-1}{x-2}} - 1$$
Vertical 3

Horizontal Transformations

Vertical Transformations

Example 1.8.4

The basic absolute value function f(x) = |x| has the following transformations applied to it: Vertical Stretch -3, Vertical Shift 1 up, Horizontal Shift 5 right.

Determine the equation of the transformed function.

$$a = -3$$

$$c = 1$$

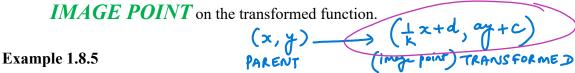
$$d = 5$$

$$k = 1$$
Back to a geometric point of view

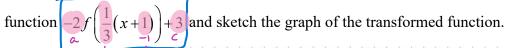
Sketching the graph of a transformed function can be relatively easy if we know:

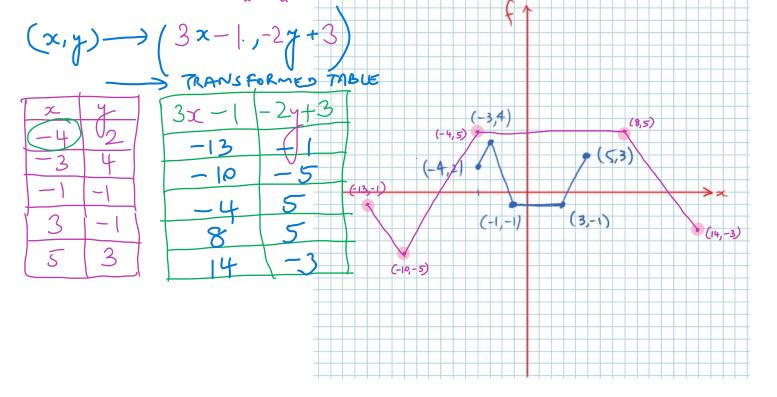
- 1) The shape of the parent function AND a few (3 or 4) points on the parent.
- 2) How transformations affect the points on the parent
 - i) Horizontal transformations affect the domain values (*OPPOSITE!!!!!!*)
 - ii) Vertical transformations affect the range values

Note: Given a point on some parent function which has transformations applied to it is called an



Given the sketch of the function f(x) determine the image points of the transformed

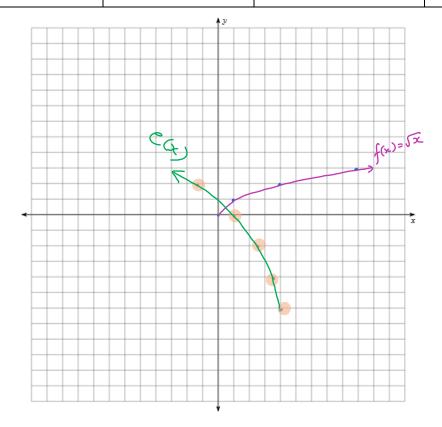




DESTRICTION MX
-3x+1273n
1273n

L T	Proper Function	Vertical	Horizontal	Horizontal	Vertical
Function	•	Stretch	Stretch	Shift	Shift
	$f(x) = a f(k(x-d)) + c$ $f(x) = \sqrt{x}$	а	1/k	d	c
$e(x) = 2\sqrt{\frac{-3x + 12}{-3} - 6}$	$=\frac{2}{2}\int -3(x-4)-6$	2	-1/3	4	-6

				y-int (e(o) = jint
Domain	ExER x <	Range	{e(x)€R e(x)≥	>-6 (x=0) 0. 33
	Parent Funct	ion:	Transform	med Function
TH	X	f(x) = \(\sqrt{x} \)	- <u> </u> x + 4	24-6
Table Of	20	0	3(0)+4=4	2(0)-6=(-6
Values	<u> </u>	2	-\frac{1}{5}(1)+4=3.7 -\frac{1}{5}(4)+4=2.7	2(1)-6 = -4 $2(2)-6 = -2$
points.	9	3	-5(9)+4= 1	2(3)-6= 0
1	16	4	$\frac{-1}{3}(16)+4=-1.3$	2(4)-6= 2



Extra work space.

HW- Section 1.6-1.8

Big Handout

Success Criteria:

- I can use the value of a to determine if there is a vertical stretch/reflection in the x-axis
- I can use the value of k to determine if there is a horizontal stretch/reflection in the y-axis
- I can use the value of d to determine if there is a horizontal translation
- I can use the value of c to determine if there is a vertical translation
- I can transform x coordinates by using the expression $\frac{1}{k}x + d$
- I can transform y coordinates by using the expression ay + c