Math 9 - Unit 2: Algebra One

Name: Name:

Lesson 2.4: More Distributive Property and Powers of Monomials

Learning Goal: We are learning to expand and simplify more complicated expressions.

Let's start off by continuing our lesson on the Distributive Property. Take a look at the following questions:

Expand AND simplify (put your answers in descending order):

a)
$$3x(4x^2-7x+2)+4x^2(2x-3)$$

= $12x^3-21x^2+6x+8x^3-12x^2$
= $20x^3-33x^2+6x$

b)
$$\frac{4y^2(3y^2-5)-5y^3(6+y)}{2-12y^4+20y^2-30y^3-5y^4}$$

= $-17y^4-30y^3+20y^3$

c)
$$3mn(2m-7n) - 5m^2(4n+8) + 6n^2(3m-n)$$

= $6m^2n - 21mn^2 - 20m^2n - 40m^2 + (8mn^2 - 6n^3)$
= $-14m^2n - 3mn^2 - 40m^2 - 6n^3$

MTH1W

Now we are going to go back to discussing monomials. How do we simplify $(3x^2y^5)^3$? This is called a monomial raised to a power. How does the outside exponent affect the question? First, how does it work with just a number?

Simplify
$$(4)^2 = (4^3)(4^3) = (4)(4)(4)(4)(4) = 46$$

The initial exponents were 3 and 2, with the final exponent a 6. So, 3 7 2 = 6! This leads to our second exponent law. When raising a power to a power, 6 the exponents. Try it out!

a)
$$(x^4)^5$$
= x^2

b)
$$(y^2)^8$$

c)
$$(m^3n^6)^4$$

= $(m^3)^4 (n^6)^4$
= $m^{12}n^{24}$

That's all well and good (hopefully), but how do you handle a question with a coefficient?

Consider the expression from before, $(3x^2y^5)^3$. Expand it without using the laws.

$$= 3^{3}.(x^{2})^{3}.(y^{5})^{3}$$
$$= 27 \times y^{15}$$

The coefficient was just raised to the power of 3! Awesome. Try out some more, this time following the laws.

a)
$$(2x^4y^2)^5$$

b)
$$(-3m^{7}n)^{2}$$

c)
$$\left(5a^2b^3c^4d^5\right)^6$$

MTH1W

d)
$$(3x^2y^5)^2(2xy^3)$$
 e) $(-4m^3n^2)^3(3m^4n^3)^2$

Success Criteria:

- I can use the distributive property to multiply a polynomial with a monomial
- I can use the distributive property to combine multiple variables into a single term
- I can simplify a monomial raised to a power by multiplying the exponents of each variable
- I can recognize that when a coefficient is raised to a power, it is NOT NOT NOT multiplied
- I can understand that raising to the power of zero equals one.