Math 9 – Unit 4: Measurement

Lesson 4.2: Rectangular and Triangular Prisms and Cylinders

Name: Mame: 9.2025 Date:

.

Learning Goal: We are learning to calculate the surface area and volume for common 3D shapes.

Surface Area: find the area of each 2D shape by itself, using yesterday's formulas, then add all of them together **Volume:** always the "area of the base" × "the height"

A NET IS THE OUTSIDE OF A 3D SOLID.

For each new solid shape, draw the net, then calculate the surface area and the volume.

$$S.A. = 2 lw + 2wL + 2hl$$

= 2(19)(13) + 2(13)(10) + 2(10)(19)
= 494 + 260 + 380
= 1134 sq. km. (~) [1134 km²]

$$Y = lwh$$

= (19)(13)(10)
= 2470 cubic km (m) 2470 km

2.
$$7 \text{ ft} = 11 \text{ ft} = 12 \text{ ft}$$

11 ft = 12 $2 \text{ ft} = 12 \text{ ft}$
11 ft 7 ft

$$S.A = 226 ft^2$$
$$V = 15 + ft^3$$

5.A. = 210 +2wh + 2hl

$$= 2(11)(7) + 2(7)(2) + 2(2)(11)$$

= 154 + 28 + 44
= 226 ft²
$$V = \int w h$$

= (11)(7)(2)
= 154 ft³

S.A.=
$$2 l \omega + 2 \omega k + 2 l h$$

 $V = l \omega h$
RECTANGULAR \rightarrow It has 6 rectangular
prism
(CUBOID)
NET
 $V = l \omega h$
NET
 $V = l \omega h$
SURFACE AREA (S.A.)
(TOTAL AREA OF ALL 2D
FACES THAT MAKE THE
3D SOLID)
S.A.= $l \omega + l h + l \omega + l h$
 $+ h \omega + h \omega$
SA.= $2 l \omega + 2 l h + 2 \omega h$
S.A.= $2 (l \omega + l h + \omega h)$
VOLUME (V)
(THE SPACE INSIDE THE
OUTSIDE COVER OF THE SOLID)
 $V = (A vea of Rectangular base) height
 $V = (l \omega)h = l \omega h$$

$$S_{A} = 3 + 2\Delta$$

$$S_{C} = 5 + 2\Delta$$

$$S_{C} = 2 + 2\Delta$$

$$S_{C$$

5.
$$\int_{h=110}^{5} \int_{h=10}^{h=10} \int_{h=10}^{h$$

Use the appropriate formula to solve for the missing measurement.

7. A rectangular prism has a volume of $5940cm^3$ with a height of 15cm and a length of 33cm. What is the width of the box?

$$G_{\underline{i}\underline{N}\underline{m}} : \underline{V} = 5940 \text{ cm}^3, \underline{h} = 15 \text{ cm}, \underline{l} = 33 \text{ cm}, \overline{\Omega} = \widehat{f}$$

$$V = \underline{l}_{\underline{\Omega}}\underline{h} = (\underline{l}\underline{h}_{\underline{\Omega}})$$

$$\Rightarrow \frac{V}{\underline{l}\underline{h}} = \omega$$

$$A_{\underline{n}\underline{s}} - \omega = \frac{V}{\underline{l}\underline{h}} = \frac{5940}{(33)(15)} = \frac{5940}{495} = 12 \text{ cm}$$

$$\therefore The width of the prism is 12 \text{ cm}.$$

8. A cylinder has a surface area of 439.82 cm^2 with a diameter of 10cm. Determine the height of the cylinder.

Given:
$$S.A.= 439.82 \text{ cm}^{2}$$
, $d = 10 \text{ cm}$, $A = 10 \text{ sm}$, $h = 2$
 $SA = 2\pi A h + 2\pi A^{2}$
 $SA - 2\pi A^{2} = 2\pi A h$
 $SA - 2\pi A^{2} = 2\pi A h$
 $\frac{SA - (2\pi A)^{2}}{(2\pi A)} = h$
 $h = \frac{439.82 - [(2)(3.14)(5)(5)]}{2(3.14)(5)}$
 $= \frac{439.82 - 157}{31.4}$
 $= \frac{282.82}{31.4} \approx 9 \text{ cm}$
 \therefore The height of yhich is appendent.

Success Criteria:

- I can find the surface area of prisms and cylinders by adding up the areas of each side
- I can find the volume of prisms and cylinders by using the appropriate formula (area of the base × height)