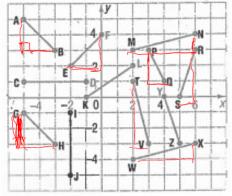
Coordinate Geometry (D) Chapter 5

Hagen/Templeton/Vanderheide

	Description and Homework	
Getting Started <i>Pg. 237</i>	Warm Up Activities	
Relations as Ordered Pairs Section 5.1 Pg. 240-245	✓Terminology of the Coordinate Plane ✓Graphing Ordered Pairs ✓Table of Values ✓Domain and Range Classwork P243-4: 1 orally, 2, 4, 6, 9, 10, 13, 16, 19, 20, 25 Homework P243-245: 3, 5, 7, 8, 11, 12, 14b, 23 Bonus P244: 26, 27	
Graphing Ordered Pairs Section 5.2 Pg. 246-249	✓Graphing Equations: Table of values Classwork P248-249: 1-15, 17, 19, 20, 22, 23 40a, 41 Homework P248-249: 16, 18, 21, 24, 25, 26,	
Graphing Linear Relations Section 5.3 Pg. 250-253	✓ First Quadrant Graphs Classwork P252-253: 1, 3, 6, 9 Homework P252-253: 2, 4, 5, 10	
Graphing Linear Equations Section 5.4 Pg. 254-258	U nique lines: x = a, y = a, x = ay Classwork P257-258 : 1, 4, 6, 7, 10, 11, 13, 17 Homework P257-258 : 2, 3, 5, 8, 9, 12,18, 22,	
Intersecting Lines Section 8.7 Pg. 439-441	✓x & y intercepts Classwork P441: 1, 3, 6, 9, 11, 13, 14 Homework P441: 2, 4, 7, 10, 12, 15, 16, 17, 1	18
Slope of a Straight Line Questions on Reverse	✓ Rise/Run ✓ m = \triangle Y/ \triangle X Classwork: 1, 2, 3, 4, 8, 10, 12 Homework: 5, 7, 9, 11, 13	
Review	Pg.290: 1-18, Pg. 444: 1-7, Pg.445: 60-63	
Chapter Check	Pg. 292: 1-10, Pg. 446: 1-4, 17-19	
Unit Test	Tentative: April 28/29	Turn Page Over


Problems and Applications

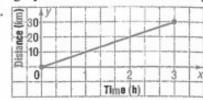
1. State whether each slope is positive or

State the slope and the equation of each

line segment/ 0 S

3. State the slope of each line segment.

Determine the slope of the line passing through each pair of points.


- 4. A(5, 9), B(7, 8)
- 5. C(3, 4), D(7, 4)
- 6. M(9, 3), N(0, 1)
- 7. P(0, -5), Q(0, 4)
- 8. K(2, 5), L(0, 8)

- A(-2, -3), B(3, 3)

State whether the slope is positive or negative for each pair of points.

- 10. C(3, 4), D(-2, -5) 11. P(-1, 3), Q(0, 2)
- 12. M(-6, 0), N(4, 5) 13. X(3, 5), Y(7, 2)

14. The graph shows how far Danzel cycled in 3 h.

- a) About how far did he travel in 2 h 45 min?
- b) About how long did it take him to cycle 15 km?
- c) What does the slope of this line tell you?
- 15, a) On the same grid, draw a line through A(1, 4) and B(-2, 2) and a line through P(-1, -1) and Q(2, 1).
- b) Calculate the slope of each line in part a).
- c) Use your answer to part b) to explain why these lines are parallel.
- 16. a) Plot the points P(-4, 2), Q(-1, -2),
- R(4, -2), and S(1, 2). Join PQ, QR, RS, and S
 - b) Draw diagonals PR and QS.
 - c) The diagonals PR and QS are perpendicular to each other. Find the slope of each diagonal. How are the slopes related?
 - d) Is this relationship true for any pair of perpendicular lines?
 - 17. The lengths of 2 ski slopes are 625 m and 760 m. The horizontal distance from the start of the run to the end of the run for both slopes is 300 m.
 - a) What is the height of the higher ski slope to the nearest metre?
 - b) Which of the 2 ski slopes is steeper? Explai

Find the values of x and y that make the following true.

$$\frac{x^y}{y^x} = 1, x \neq y$$

toril 18/16