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Chapter 4 — Exponential Functions

Additional Review — Doubling and Half-Life

Example (Doubling)
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6. A species of bacteria has a population of 500 at noon. It doubles every

Chunked  None ’

3 The function that models the growth of the population, P, at any hour, 7, is

P(r) = 500(2@) N}
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b) Why is the base 22 Sob L
c) \Why is thc“multipliﬁr %U 0: /I yes o o = OLJ U\y‘

d) Determine the population at midnight.

)
e) Determine the population at noon the next day. FU(OJ .
f) Determine the time at which the population first exceeds 2000.
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Example’(Half-Life) SV ]L» Clﬁce
9. A student recor € internal temperature of a hot sandwich that has been 5

I3 icft to cool on a kitchen counter. The room temperature is 19 °C. An

equation that models this situation is or (5'%3/ M“‘j—

T(z) = 63@@ + 19
where T is the temperature in degrees Celsius and 7 is the time in minutes.

a) What was the temperature of the sandwich when she began to record T\U .-y[ QP—V

its temperature?

20 min.
c¢) How much time did it take for the sandwich to reach an internal
temperature of 30°C?

b) Determine the temperature, to the nearest degree, of the sandwich after A(D ( ’L Vh)
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