

Chapter 6 – Sinusoidal Functions

6.6 – Models of Sinusoidal Functions

In this section we will look at how to develop a sinusoidal function which can explain given information. In essence we will be writing sine or cosine functions based on given transformations.

Just as a reminder:

General Form of the Sine and Cosine Functions

$$f(\theta) = a \sin(k(\theta - d)) + c$$
 $g(\theta) = a \cos(k(\theta - d)) + c$

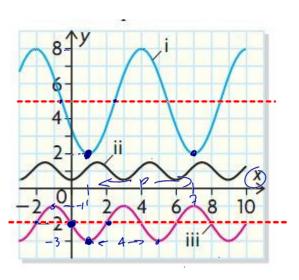
Another reminder (about the pattern of sinusoidal functions):

Sine functions "start" at the central axis and go up to a **max** if "a" is **positive**, or down to a **min** if "a" is **negative**.

Cosine functions "start" at a max if "a" is positive, or at a min if "a" is negative.

Example 6.6.1

From your text: Pg. 391 #4a


Determine a sinusoidal equation for each function:

1)
$$C = \frac{M_{2} \times + M_{1}^{2}}{2} = \frac{8+2}{2} = 5$$

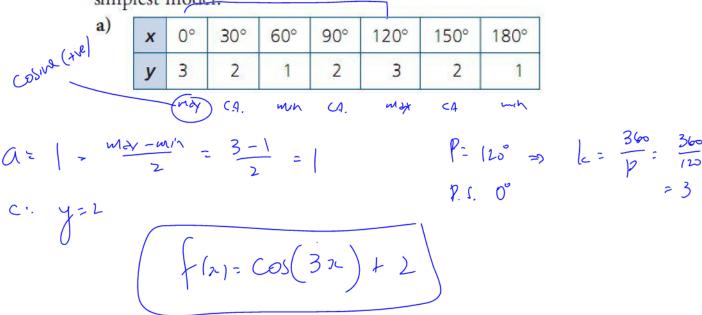
$$A = \frac{M_{2} \times - M_{1}^{2}}{2} = \frac{8-2}{2} = 3$$
P.S. I right, $P = 6$

$$L = \frac{360}{6} = 60$$

Osine (negative)

$$\frac{111}{2} = \frac{Max - MA}{2} = \frac{1 - (-3)}{2}$$

$$(: \frac{M_{3}y + m_{1}h}{2})$$
= $-[+(-\frac{3}{3})]$
= -2


$$g(x) = - Sin (90x) - 2$$

100

Example 6.6.2

From your text: Pg. 392 #5a)

5. For each table of data, determine the equation of the function that is the simplest model.

Example 6.6.3

From your text: Pg. 392 #6b)

6. Determine the equation of the cosine function whose graph has each of the following features.

	Amplitude	Period	Equation of the Axis	Horizontal Translation
a)	3	360°)	y = 11	0° ('7
b)	4	180°	y = 15	d= (+30°) right

Class/Homework: Pg. 391 – 393 #4b, 5bcd, 6acd, 7, 11 – Also work on the Transformations Sheet!