2.2 Derivatives of Polynomial Functions

Using the "formal" definition of the derivative

can be painful and tedious. Mathematicians, always wanting to reduce pain and tedium develop rules to simply our work. And we will spend a bit of time learning the rules, and how to use them.

The Derivative of a Constant Function

Given f(x) = k, then f'(x) = 0

Proof:

KEEP IN MIND

The derivative is a **TOOL** for measuring rate of change. In terms of algebraic functions, the **derivative calculates the slope** of tangents.

The Derivative of a Constant times a Differentiable Function

Given a differentiable function, f(x), then, the function $g(x) = k \cdot f(x)$, k constant, is also differentiable, and $g'(x) = k \cdot f'(x)$.

Proof:

The Derivative of a Power Function (*The Power Rule*)

Given a power function $f(x) = x^n$, then f(x) is differentiable and $f'(x) = n \cdot x^{n-1}$ (See pg. 77 for a proof, which requires knowledge of the Binomial Theorem)

> **The Power Rule says:** *"Bring the exponent down, and reduce the exponent by 1"*

Example 2.2.1

Differentiate

a) $f(x) = x^3$ b) $g(x) = x^{-4}$ c) $h(x) = x^{\frac{2}{5}}$

d)
$$f(x) = 7x^4$$
 e) $g(x) = x$ f) $h(x) = -6x$

g)
$$f(x) = \pi x^5$$
 h) $g(x) = \frac{3}{x^6}$ i) $h(x) = \sqrt[3]{x}$

The Derivatives of Sums and Differences of Differentiable Functions

Given differentiable functions f(x) and g(x), then the functions

F(x) = f(x) + g(x), and G(x) = f(x) - g(x)are also differentiable and F'(x) = f'(x) + g'(x), and G'(x) = f'(x) - g'(x)

See page 79 for the simple proofs of these results.

Example 2.2.2

Differentiate
$$f(x) = 3x^3 - 4\sqrt{x} + \frac{7}{x^2}$$

Example 2.2.3

Differentiate
$$g(x) = \frac{7x^2 - 5x^3 + 8x}{\sqrt{x}}$$

Class/Homework for Section 2.2 Pg. 82 – 84 #2 – 4, 6, 7, 9, 11 – 14, 16, 18, 21, 23, 25