2.3 The Product Rule

Theorem

Given f(x), and g(x), both differentiable, then the **PRODUCT FUNCTION**

 $F(x) = f(x) \cdot g(x)$

is differentiable, and

 $F'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$

Proof

Example 2.3.1

Differentiate $f(x) = (3x^2 - 5x + 2)(3\sqrt{x} - 5x^{-2})$ Note: The Product Rule says "(deriv. of 1st times 2nd) + (first times deriv. of 2nd)"

Triple Product Rule

Given three differentiable functions f(x), g(x), and h(x), then the function

 $H(x) = f(x) \cdot g(x) \cdot h(x)$

is also differentiable, and

$$H'(x) = f'(x) \cdot g(x) \cdot h(x) + f(x) \cdot g'(x) \cdot h(x) + f(x) \cdot g(x) \cdot h'(x)$$

Proof

Example 2.3.2

Differentiate $f(x) = (3x^2 - 2x)^3$

The Power of a Function Rule

Given a differentiable function f(x), then the power function

$$F(x) = (f(x))^{n}$$

is also differentiable and

$$\frac{dF}{dx}(x) = \left[n \cdot \left(f(x)\right)^{n-1}\right] \cdot \left(\frac{df}{dx}(x)\right)$$

Example 2.3.3

Differentiate $(3x^2 - 2x)^3$

Example 2.3.4

Differentiate
$$\left(x^{\frac{2}{3}} - 5x^2 + 3x - 5\right)^{52}$$

Class/Homework for Section 2.3 Pg. 90 – 91 #2, 3, 5