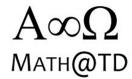
CALCULUS

Chapter 5 – Trigonometric, Exponential and Logarithmic Functions

(Material adapted from Chapter 5 of your text)



Chapter 5 – Trigonometric, Exponential and Logarithmic Functions

Contents with suggested problems from the Nelson Textbook (Chapter 5)

5.1 The Derivative of
$$f(x) = e^x - Pg 83 - 86$$

Pg. 232 – 233 #2 – 4, 6, 9, 11 – 13

5.2 The Derivative of the General Exponential – Pg 87 -88 Pg. 240 # 1 – 7

5.1 The Derivative of $f(x) = e^x$

e is a **transcendental number**, as is the number π . e is named after **Leonard Euler**, who is one of the most brilliant humans to have ever walked the face of the earth.

e = 2.71828182845904523536028747135266249775724709369995...

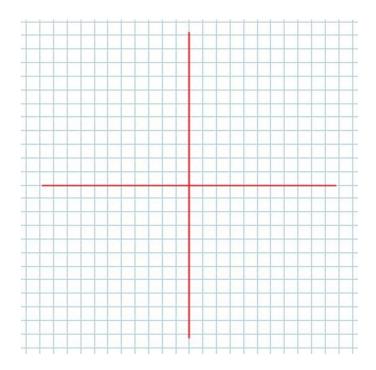
Definition 5.1.1

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
 (obviously....)

Some properties of the function $f(x) = e^x$

It is an exponential function, with base e.

Picture



The Derivative

Given $f(x) = e^x$, then

$$\frac{\mathrm{d}f}{\mathrm{d}x}(x) = f'(x) =$$

Consider the **composite function** $f(x) = e^{g(x)}$. The by the *Chain Rule*

$$f'(x) =$$

Example 5.1.1

Differentiate:

a)
$$y = e^{3x^2}$$

b)
$$f(x) = e^{\sqrt[3]{x^2-4}}$$

Example 5.1.2

From your text: Pg. 232 #3
Differentiate:

$$c) f(x) = \frac{e^{-x^3}}{x}$$

b)
$$y = x \cdot e^{3x}$$

d)
$$g(x) = \sqrt{x} \cdot e^x$$

Example 5.1.3

From your text: Pg. 233 #7

Determine the equation of the tangent to the curve $y = x \cdot e^{-x}$ at the point $A(1, e^{-1})$.

Class/Homework for Section 5.1

Pg. 232 – 233 #2 – 4, 6, 9, 11 – 13