5.2 The Derivative of the General Exponential

In section 5.1 we learned that for the (so called) Natural Exponential Function $f(x) = e^x$ the derivative is given by: $f'(x) = e^x$

We now turn our attention to the General Exponential Function $f(x) = b^x$, b > 0 and we ask "what is its derivative?"

Before answering that question it will be helpful to review a little bit about Exponentials and their inverses: Logarithms.

Given an exponential equation, $y = 2^x$ we can invert using a logarithm and isolate for x:

So for $y = e^x$

Finally, recall that $\log_a(a) =$

And so $\log_e(e) = \ln(e) =$

Example 5.2.1

Given $g(x) = 2^x$ determine g'(x).

In general, given an exponential function $f(x) = b^x$, b > 0, then

$$f'(x) =$$

Consider the composite function $f(x) = b^{g(x)}$.

$$f'(x) =$$

Example 5.2.2

From your text: Pg 240 #1. Differentiate:

a)
$$y = 2^{3x}$$
 d) $w = 10^{(5-6n+n^2)}$

Example 5.2.3

From your text: Pg. 240 #2b) Differentiate

 $y = x \cdot 3^{x^2}$

Class/Homework for Section 5.2 Pg. 240 # 1 – 7