6.6 Algebraic Operations with Vectors in \mathbb{R}^2

We will begin by considering two Very Special vectors.

The Standard Unit Vectors are **beautiful** because they are so easy to "scale". For example, consider the vector $\vec{a} = (7,0)$. We can write

Another example would be rewriting $\vec{b} = (0.-3)$ as

Consider the general position vector for \mathbb{R}^2 $\overrightarrow{OP} = (m, n)$, (where $m, n \in \mathbb{R}$).

A picture:

Huge Insight

We say **ANY** vector in \mathbb{R}^2 can be **uniquely** written as a **Linear Comination** of the standard unit vectors.

Definition 6.6.1

Adding Vectors Algebraically

Example 6.6.1

Given $\overrightarrow{OA} = (3,1)$, and $\overrightarrow{OB} = (2,2)$, determine $\overrightarrow{OA} + \overrightarrow{OB}$

Picture

Note: We add vectors **component-wise**

Example 6.6.2

Given
$$\vec{a} = (3, -5)$$
, and $\vec{b} = (-8, -2)$, determine:
i) $\vec{a} + \vec{b}$ ii) $\vec{b} - \vec{a}$

Example 6.6.3 (*this is an important one...well they all are, but this one especially*) Given the **points** A(2,-1) and B(3,2), draw vector \overrightarrow{AB} and determine its **components**.

Magnitude of a vector algebraically

Consider the position vector $\overrightarrow{OA} = (2,5)$.

In general, for some vector \overrightarrow{AB} with endpoints $A(x_1, y_1)$ and $B(x_2, y_2)$

Consider now a position vector $\vec{a} = (x, y)$

Example 6.6.4 Given $\vec{a} = (3, -1)$ and $\vec{b} = (-2, 4)$ find $|\vec{a} - 2\vec{b}|$.

Class/Homework for Section 6.6 Pg. 324 – 326 #1 – 17