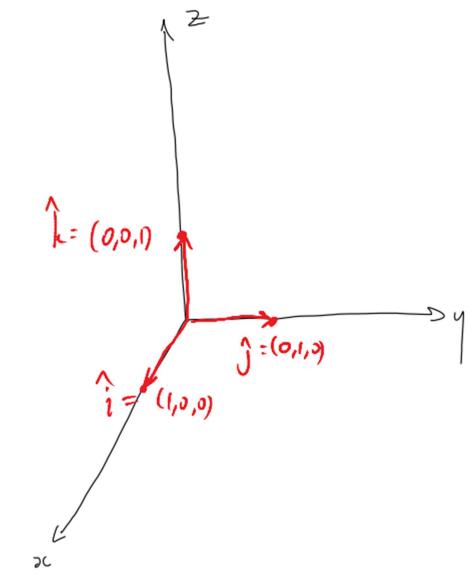
6.7 Algebraic Operations with Vectors in \mathbb{R}^3

Today's lesson is an extension (into the third dimension...*ominous music plays*) of what we saw in section 6.6.

Consider the sketch:



We call the vectors \hat{i} , \hat{j} , and \hat{k}

As in \mathbb{R}^2 we have a **unique** association between points and position vectors in \mathbb{R}^3 . That is, given a point P(a,b,c) we can uniquely define the position vector $\overrightarrow{OP} = (a,b,c)$. Furthermore, we can write \overrightarrow{OP} as a linear combination of the standard unit vectors in \mathbb{R}^3 :

$$\overrightarrow{OP} =$$

Consider the *general* vector \overrightarrow{AB} in \mathbb{R}^3 where the points $A(x_1, y_1, z_1)$, and $B(x_2, y_2, z_2)$ are the tail and tip of \overrightarrow{AB} respectively. We can write

Further, by Pythagorus,

$$\overline{AB} =$$

Finally, for a general position vector $\vec{v} = (a, b, c)$

$$\overline{v} =$$

Class/Homework for Section 6.7 Pg. 332 – 333 #1 – 14