6.8 Linear Combinations and Spanning Sets

Given the non collinear vectors \vec{u} and \vec{v} , and the scalars *a* and *b*, we can construct a third vector $\vec{w} = a\vec{u} + b\vec{v}$ (we call \vec{w} a **linear combination** of vectors \vec{u} and \vec{v}).

Picture:

ר ע |

Since \vec{w} is a linear combination of \vec{u} and \vec{v} we say that the set of vectors $\{\vec{w}, \vec{u}, \vec{v}\}$ form a linear dependent set. Now, because \vec{u} and \vec{v} are not collinear, we call the set $\{\vec{u}, \vec{v}\}$ a linearly independent set.

Note:			٦
			ノ

Example 6.8.1

Show that $\vec{w} = (2, -1)$ can be written as a linear combination of $\vec{u} = (3, 3)$ and $\vec{v} = (1, 2)$.

Example 6.8.2

Show that $\vec{w} = (2, -1)$ cannot be written as a linear combination of $\vec{x} = (1, 3)$ and $\vec{y} = (-2, -6).$

Class/Homework for Section 6.8 (pt. 1) Pg. 344 #1 – 4